题目大意:给定一张有向图,每个点有且仅有一条出边,要求若一个点x扔下去,至少存在一个保留的点y,y的出边指向x,求最多扔下去多少个点
首先原题的意思就是支配关系 我们反向考虑 求最少保留的点 要求一个点若扔出去 则必须存在一个保留的点指向它
于是这就是最小支配集 不过由于是有向图 所以一个点要么选择 要么被子节点支配 所以就只剩下2个状态了
设f[x]为以x为根的子树选择x的最小支配集 g[x]为不选择x的最小支配集
然后由于是基环树林 所以我们选择一个环上的点 拆掉它的出边 设这个点为x 出边指向的点为y 讨论
1.若x选择 则y一开始就是被支配状态 g[y]初值为0 求一遍最小支配集
2.若x不选 正常求最小支配集即可
两种情况取最小值计入ans 最后输出n-ans即可
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1001001
#define INF 0x3f3f3f3f
using namespace std;
struct abcd{
int to,next;
bool ban;
}table[M];
int head[M],tot;
int n,p,conquered,ans,a[M],f[M],g[M],fa[M];//f 选 g 被支配
bool v[M];
void Add(int x,int y)
{
table[++tot].to=y;
table[tot].next=head[x];
head[x]=tot;
}
void DFS(int x)
{
v[x]=1;
if(v[a[x]])
p=x;
else
DFS(a[x]);
}
void Tree_DP(int x)
{
int i;
f[x]=1;
g[x]=INF;
v[x]=1;
if(x==conquered)
g[x]=0;
for(i=head[x];i;i=table[i].next)
if(!table[i].ban&&table[i].to!=fa[x])
{
fa[table[i].to]=x;
Tree_DP(table[i].to);
g[x]+=min(f[table[i].to],g[table[i].to]);
g[x]=min(g[x],f[x]+f[table[i].to]-1);
f[x]+=min(f[table[i].to],g[table[i].to]);
}
}
int main()
{
int i;
cin>>n;
for(i=1;i<=n;i++)
scanf("%d",&a[i]),Add(a[i],i);
for(i=1;i<=n;i++)
if(!v[i])
{
DFS(i);
table[p].ban=1;
conquered=a[p];
Tree_DP(p);
int temp=f[p];
conquered=0;
Tree_DP(p);
temp=min(temp,g[p]);
ans+=temp;
}
cout<<n-ans<<endl;
}