BZOJ 3672 NOI2014 购票 树的点分治+斜率优化

题目大意:给定一棵以1为根的有根树,每条边有边权,每个点有三个值pi,qi,li

从一个点可以走到它的某个祖先处,前提是距离d不超过li,花销为pi*d+qi

求从每个点到达根节点的最小花销

这道题的上一份题解:http://blog.csdn.net/popoqqq/article/details/39009219

很不幸我作死去重写了一发233

之前的写法真是SB的1B。。。 为何要暴力- - 明明是分治结构直接排序不行么- -

简述一下做法:

0.先推出斜率优化的动归方程

1.找到当前分治的树结构的重心

2.将分成的子树中含有根节点那部分连重心一并分治

3.将其余子树的点拎出来,按照能走到的最小深度从大到小排序

4.对于每个点,将重心到分治结构的根节点路径上所有的点中能到达的那些点维护一个凸包 然后二分查找

5.对其余子树进行分治

时间复杂度O(nlog^2n)

随便写了一发然后RANK6了- - 果然分治要比链剖要快啊233

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 200200
#define INF 1e15
using namespace std;
struct abcd{
	int to,next;
	long long f;
	bool ban;
}table[M];
int head[M],tot;
int n,type;
int fa[M],size[M],points[M];
long long f[M],p[M],q[M],limit[M],dis[M];
namespace Convex_Hull{
	struct Point{
		long long x,y;
		Point() {}
		Point(long long _,long long __):
			x(_),y(__) {}
	}stack[M];
	int top=M;
	double slope[M];
	double Get_Slope(const Point &p1,const Point &p2)
	{
		return (double)(p1.y-p2.y)/(p1.x-p2.x);
	}
	void Insert(int x)
	{
		Point p=Point(dis[x],f[x]);
		double s=M-top?Get_Slope(p,stack[top]):INF;
		while( M-top>=2 && s>=slope[top] )
			s=Get_Slope(p,stack[++top]);
		stack[--top]=p;
		slope[top]=s;
	}
	Point Query(double s)
	{
		int temp=lower_bound(slope+top,slope+M,s)-slope;
		return stack[temp];
	}
}
void Add(int x,int y,long long z)
{
	table[++tot].to=y;
	table[tot].f=z;
	table[tot].next=head[x];
	head[x]=tot;
}
void DFS1(int x)
{
	int i;
	for(i=head[x];i;i=table[i].next)
	{
		dis[table[i].to]=dis[x]+table[i].f;
		DFS1(table[i].to);
	}
}
void Get_Centre_Of_Gravity(int x,int size,int& cg)
{
	int i;bool flag=1;
	::size[x]=1;
	for(i=head[x];i;i=table[i].next)
		if(!table[i].ban)
		{
			Get_Centre_Of_Gravity(table[i].to,size,cg);
			::size[x]+=::size[table[i].to];
			if(::size[table[i].to]<<1>size)
				flag=0;
		}
	if( (size-::size[x])<<1>size )
		flag=0;
	if(flag) cg=x;
}
void Get_Points(int x)
{
	int i;
	points[++points[0]]=x;
	for(i=head[x];i;i=table[i].next)
		if(!table[i].ban)
			Get_Points(table[i].to);
}
bool Compare(int x,int y)
{
	return dis[x]-limit[x] > dis[y]-limit[y] ;	
}
void Tree_Divide_And_Conquer(int root,int size)
{
	int i,j,cg;
	if(size==1) return ;
	Get_Centre_Of_Gravity(root,size,cg);
	for(i=head[cg];i;i=table[i].next)
		table[i].ban=1;
	Tree_Divide_And_Conquer(root,size-::size[cg]+1);
	points[0]=0;
	for(i=head[cg];i;i=table[i].next)
		Get_Points(table[i].to);
	sort(points+1,points+points[0]+1,Compare);
	using namespace Convex_Hull;
	for(i=1,j=cg,top=M;i<=points[0];i++)
	{
		int x=points[i];
		for(;j!=fa[root]&&dis[j]>=dis[x]-limit[x];j=fa[j])
			Insert(j);
		if(top!=M)
		{
			Point p=Query(::p[x]);
			f[x]=min(f[x],p.y+::p[x]*(dis[x]-p.x)+q[x]);
		}
	}
	for(i=head[cg];i;i=table[i].next)
		Tree_Divide_And_Conquer(table[i].to,::size[table[i].to]);
}
int main()
{
	int i;
	long long length;
	cin>>n>>type;
	for(i=2;i<=n;i++)
	{
		scanf("%d%lld",&fa[i],&length);
		scanf("%lld%lld%lld",&p[i],&q[i],&limit[i]);
		Add(fa[i],i,length);
	}
	DFS1(1);
	memset(f,0x3f,sizeof f);f[1]=0;
	Tree_Divide_And_Conquer(1,n);
	for(i=2;i<=n;i++)
		printf("%lld\n",f[i]);
	return 0;
}

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策的下标。每次加入一个新的决策 i 时,我们可以将队列尾部的决策 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策就是最优决策。我们可以用类似于双指针的方法来维护队列头部的决策是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策。对于每个,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值