Ubuntu 64位兼容32位

本文介绍在Ubuntu16.04(64位)环境中运行及开发32位程序的方法。需安装libc6:i386、lib32stdc++6、lib32z1等兼容包,并配置gcc-multilib和g++-multilib以支持32位编译。编译时使用-m32参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 前言

    使用Ubuntu16.04(64bit)进行嵌入式开发时,默认情况下无法正常运行32位的交叉编译工具链,因此需要安装额外兼容包。

1 运行32位程序

    若只是需要在Ubuntu16.04(64bit)中运行32bit程序, 只需要安装libc6:i386即可[3]:

sudo apt-get install -y libc6:i386

    某些程序还需要用到lib32stc++6[4]:

sudo apt-get install -y lib32stdc++6

    此外,还需要用到的库有lib32z1[5]

sudo apt-get install -y lib32z1

2 开发32位程序

    在x64平台上开发32bit程序,还需安装如下库[6]:

sudo apt-get install -y gcc-multilib g++-multilib

    然后编译程序时加上“-m32”参数即可[6]:

gcc test.c -m32

    通过file命令查看编译出来的可执行文件,可确认它确实为32位的: 

图2.1

参考资料

[1]ubuntu 12.04 64位设置兼容32位的实现

[2]Ubuntu64位上运行32位程序

[3]如何在ubuntu14.04(64位)编译运行32位程序

[4]error while loading libstdc++.so.6

[5]error while loading shared librarieserror while loading shared libraries: : libz.so.1

[6]gcc编译-m32、-mx32有什么区别

### YOLOv8检测头改进方法 在探讨YOLOv8检测头改进时,基于Damo-YOLODyHead检测头的方法提供了显著提升模型性能的新思路[^1]。 #### 多尺度特征融合增强 通过引入多尺度特征金字塔网络(FPN),可以有效提高小物体检测精度。该技术允许不同层次的特征图相互补充,从而增强了对于各种尺寸目标的有效捕捉能力。 ```python def build_fpn(features): p3, p4, p5 = features[-1], features[-2], features[-3] # 上采样并相加 p4_upsampled = tf.image.resize(p5, size=(tf.shape(p4)[1:3])) p4_plus = p4 + p4_upsampled p3_upsampled = tf.image.resize(p4_plus, size=(tf.shape(p3)[1:3])) p3_out = conv_block(p3 + p3_upsampled) # 下采样并相加 p4_out = conv_block(tf.keras.layers.MaxPooling2D()(p3_out) + p4_plus) p5_out = conv_block(tf.keras.layers.MaxPooling2D()(p4_out) + p5) return [p3_out, p4_out, p5_out] ``` #### 动态权重分配机制 采用动态头部(Dynamic Head),即DyHead策略,在训练过程中自适应调整各层之间的连接强度。此方法能够使网络更专注于重要的区域,并减少背景噪声的影响,进而改善整体定位准确性。 #### 高效锚框设计 优化后的锚框生成算法不再依赖预定义形状集,而是利用聚类分析自动学习最佳比例参数。这不仅简化了配置过程,还提高了对未知场景下新类别对象识别的效果。 #### 自注意力模块集成 融入Transformer中的Self-Attention组件作为额外路径加入到原有卷积操作之中。这种混合型架构有助于捕获远程依赖关系以及局部细节信息间的交互作用,进一步提升了复杂背景下密集排列物品区分度的表现水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OneSea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值