引用:http://www.cnblogs.com/scut-fm/p/3756242.html
cublas库是CUDA标准的线代库,但没有专门针对稀疏矩阵的操作。
其中cublasSgemm实现C=α*A*B+β*C功能
函数原型为
/* GEMM */
CUBLASAPI cublasStatus_t CUBLASWINAPI cublasSgemm_v2 (cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float *alpha, /* host or device pointer */
const float *A,
int lda,
const float *B,
int ldb,
const float *beta, /* host or device pointer */
float *C,
int ldc);
函数中handle为blas库对象
transa 为矩阵A属性参数
transb 为矩阵B属性参数
M A,C行数,即C的高
N B,C列数,即C的宽
K A的列数和B的行数
alpha 运算式的α的地址
A A在显存中的地址
lda A的主维度,所表达的矩阵的高
B B在显存中的地址
ldb B的主维度,所表达的矩阵的高
beta 运算式的β的地址
C C在显存中的地址
ldc C的主维度,所表达的矩阵的高
若列优先计算矩阵乘法
|1 0| * |2 0 3| = |2 0 3|
|1 1 0|
A * B = C
则*alpha=1.0,*β=0.0
列存储形式:
A={1,0}表示矩阵,矩阵宽2,高1
1 0
B={2,1,0,1,3,0},矩阵宽3,高2
2 0 3
1 1 0
C={2,0,3},矩阵宽3,高1
2 0 3
ABC均按列存储,所以AB属性设置为CUBLAS_OP_N,得到的C矩阵也是按列存储
MNK分别为1,3,2
lda,ldb,ldc分别为三个矩阵的高,即1,2,1
全部代码如下
// CUDA runtime 库 + CUBLAS 库
#include "cuda_runtime.h"
#include "cuda_runtime_api.h"
#include "cublas_v2.h"
#include <time.h>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MyTimer.h"
//本代码实现了cublas的列存储矩阵乘法
//#include <common_functions.h>
/*
|1 0| * |2 0 3| = |2 0 3|
|1 1 0|
A * B = C
cublasSgemm 实现的功能为C = alpha*A*B + beta*C
ABC均为列存储
*/
using namespace std;
// 定义测试矩阵的维度
int const aW = 2;
int const aH = 1;
int const bW = 3;
int const bH = 2;
int const cW = bW;
int const cH = aH;
int main()
{
// 定义状态变量
cublasStatus_t status;
// 在 内存 中为将要计算的矩阵开辟空间
float *h_A = (float*)malloc (aW*aH*sizeof(float));
float *h_B = (float*)malloc (bW*bH*sizeof(float));
// 在 内存 中为将要存放运算结果的矩阵开辟空间
float *h_C = (float*)malloc (cW*cH*sizeof(float));
// 为待运算矩阵的元素赋值
h_A[0]=1; h_A[1]=0;
h_B[0]=2; h_B[1]=1; h_B[2]=0; h_B[3]=1; h_B[4]=3; h_B[5]=0;
// 打印待测试的矩阵
cout << "矩阵 A :" << endl;
for (int i=0; i<aW*aH; i++){
cout << h_A[i] << " ";
if ((i+1)%aW == 0) cout << endl;
}
cout << endl;
cout << "矩阵 B :" << endl;//按照行优先打印的,不正确
for (int i=0; i<bW*bH; i++){
cout << h_B[i] << " ";
if ((i+1)%bW == 0) cout << endl;
}
cout << endl;
/*
** GPU 计算矩阵相乘
*/
// 创建并初始化 CUBLAS 库对象
cublasHandle_t handle;
status = cublasCreate(&handle);
if (status != CUBLAS_STATUS_SUCCESS)
{
if (status == CUBLAS_STATUS_NOT_INITIALIZED) {
cout << "CUBLAS 对象实例化出错" << endl;
}
getchar ();
return EXIT_FAILURE;
}
float *d_A, *d_B, *d_C;
// 在 显存 中为将要计算的矩阵开辟空间
cudaMalloc (
(void**)&d_A, // 指向开辟的空间的指针
aW*aH * sizeof(float) // 需要开辟空间的字节数
);
cudaMalloc (
(void**)&d_B,
bW*bH * sizeof(float)
);
// 在 显存 中为将要存放运算结果的矩阵开辟空间
cudaMalloc (
(void**)&d_C,
cW*cH * sizeof(float)
);
// 将矩阵数据传递进 显存 中已经开辟好了的空间
cublasSetVector (
aW*aH, // 要存入显存的元素个数
sizeof(float), // 每个元素大小
h_A, // 主机端起始地址
1, // 连续元素之间的存储间隔
d_A, // GPU 端起始地址
1 // 连续元素之间的存储间隔
);
cublasSetVector (
bW*bH,
sizeof(float),
h_B,
1,
d_B,
1
);
// 同步函数
cudaThreadSynchronize();
Timer myTimer;
myTimer.start();
// 传递进矩阵相乘函数中的参数,具体含义请参考函数手册。
float a=1; float b=0;
// 矩阵相乘。该函数必然将数组解析成列优先数组
cublasSgemm (
handle, // blas 库对象
CUBLAS_OP_N, // 矩阵 A 属性参数
CUBLAS_OP_N, // 矩阵 B 属性参数
cH, // A, C 的行数
cW, // B, C 的列数
aW, // A 的列数和 B 的行数
&a, // 运算式的 α 值
d_A, // A 在显存中的地址
aH, // lda
d_B, // B 在显存中的地址
bH, // ldb
&b, // 运算式的 β 值
d_C, // C 在显存中的地址(结果矩阵)
cH // ldc
);
// 同步函数
cudaThreadSynchronize();
myTimer.stop();
printf("use: %lf\n", myTimer.getElapsedTime());
// 从 显存 中取出运算结果至 内存中去
cublasGetVector (
cW*cH, // 要取出元素的个数
sizeof(float), // 每个元素大小
d_C, // GPU 端起始地址
1, // 连续元素之间的存储间隔
h_C, // 主机端起始地址
1 // 连续元素之间的存储间隔
);
// 打印运算结果
cout << "计算结果的转置 ( (A*B)的转置 ):" << endl;
for (int i=0;i<cW*cH; i++){
cout << h_C[i] << " ";
if ((i+1)%cW == 0) cout << endl;
}
// 清理掉使用过的内存
free (h_A);
free (h_B);
free (h_C);
cudaFree (d_A);
cudaFree (d_B);
cudaFree (d_C);
// 释放 CUBLAS 库对象
cublasDestroy (handle);
getchar();
return 0;
}
C语言中行优先是更加习惯的使用,因此,在介绍下使用cublas实现行优先矩阵乘法的方法
C=A*B则C'=B'*A'
行存储形式:
A={1,0}表示矩阵,矩阵宽2,高1
1 0
B={2,0,3,1,1,0},矩阵宽3,高2
2 0 3
1 1 0
C={2,0,3},矩阵宽3,高1
2 0 3
ABC均按行存储
我们设置AB属性为CUBLAS_OP_N,cublas将AB按照列优先解析,并将A按宽1高2,B按宽2高3,C按宽1高3的方式设置。
则cublas认为B是
2 1
0 1
3 0
即B的转置,AC同理
那么计算C=A*B时,我们按照上面设置将参数传入cublasSgemm函数,得到的即为C'=B'*A'即实现了行优先存储乘法(行优先和列优先在计算时,输入输出矩阵数据分别按照行优先和列优先给出,赋值时宽高不必做转换,该是什么就是什么,但
cublasSgemm函数中的宽高需要改成其转置,A和B也要互换,具体看代码)
行优先存储全部代码如下
/*
* cublasLearn.cpp
*
* Created on: 2017年4月6日
* Author: wjt
*/
// CUDA runtime 库 + CUBLAS 库
#include "cuda_runtime.h"
#include "cuda_runtime_api.h"
#include "cublas_v2.h"
#include <time.h>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MyTimer.h"
//本代码实现了cublas的行存储矩阵乘法
//#include <common_functions.h>
/*
|1 0| * |2 0 3| = |2 0 3|
|1 1 0|
A * B = C
cublasSgemm 实现的功能为C = alpha*A*B + beta*C
ABC均为列存储
*/
using namespace std;
// 定义测试矩阵的维度
int const aW = 2;
int const aH = 1;
int const bW = 3;
int const bH = 2;
int const cW = bW;
int const cH = aH;
int main()
{
// 定义状态变量
cublasStatus_t status;
// 在 内存 中为将要计算的矩阵开辟空间
float *h_A = (float*)malloc (aW*aH*sizeof(float));
float *h_B = (float*)malloc (bW*bH*sizeof(float));
// 在 内存 中为将要存放运算结果的矩阵开辟空间
float *h_C = (float*)malloc (cW*cH*sizeof(float));
// 为待运算矩阵的元素赋值
h_A[0]=1; h_A[1]=0;
h_B[0]=2; h_B[1]=0; h_B[2]=3; h_B[3]=1; h_B[4]=1; h_B[5]=0;
// 打印待测试的矩阵
cout << "矩阵 A :" << endl;
for (int i=0; i<aW*aH; i++){
cout << h_A[i] << " ";
if ((i+1)%aW == 0) cout << endl;
}
cout << endl;
cout << "矩阵 B :" << endl;
for (int i=0; i<bW*bH; i++){
cout << h_B[i] << " ";
if ((i+1)%bW == 0) cout << endl;
}
cout << endl;
/*
** GPU 计算矩阵相乘
*/
// 创建并初始化 CUBLAS 库对象
cublasHandle_t handle;
status = cublasCreate(&handle);
if (status != CUBLAS_STATUS_SUCCESS)
{
if (status == CUBLAS_STATUS_NOT_INITIALIZED) {
cout << "CUBLAS 对象实例化出错" << endl;
}
getchar ();
return EXIT_FAILURE;
}
float *d_A, *d_B, *d_C;
// 在 显存 中为将要计算的矩阵开辟空间
cudaMalloc (
(void**)&d_A, // 指向开辟的空间的指针
aW*aH * sizeof(float) // 需要开辟空间的字节数
);
cudaMalloc (
(void**)&d_B,
bW*bH * sizeof(float)
);
// 在 显存 中为将要存放运算结果的矩阵开辟空间
cudaMalloc (
(void**)&d_C,
cW*cH * sizeof(float)
);
// 将矩阵数据传递进 显存 中已经开辟好了的空间
cublasSetVector (
aW*aH, // 要存入显存的元素个数
sizeof(float), // 每个元素大小
h_A, // 主机端起始地址
1, // 连续元素之间的存储间隔
d_A, // GPU 端起始地址
1 // 连续元素之间的存储间隔
);
cublasSetVector (
bW*bH,
sizeof(float),
h_B,
1,
d_B,
1
);
// 同步函数
cudaThreadSynchronize();
Timer myTimer;
myTimer.start();
// 传递进矩阵相乘函数中的参数,具体含义请参考函数手册。
float a=1; float b=0;
// 矩阵相乘。该函数必然将数组解析成列优先数组
cublasSgemm (
handle, // blas 库对象
CUBLAS_OP_N, // 矩阵 A 属性参数
CUBLAS_OP_N, // 矩阵 B 属性参数
bW, // A, C 的行数
aH, // B, C 的列数
bH, // A 的列数和 B 的行数
&a, // 运算式的 α 值
d_B, // A 在显存中的地址
bW, // lda
d_A, // B 在显存中的地址
aW, // ldb
&b, // 运算式的 β 值
d_C, // C 在显存中的地址(结果矩阵)
cW // ldc
);
// 同步函数
cudaThreadSynchronize();
myTimer.stop();
printf("use: %lf\n", myTimer.getElapsedTime());
// 从 显存 中取出运算结果至 内存中去
cublasGetVector (
cW*cH, // 要取出元素的个数
sizeof(float), // 每个元素大小
d_C, // GPU 端起始地址
1, // 连续元素之间的存储间隔
h_C, // 主机端起始地址
1 // 连续元素之间的存储间隔
);
// 打印运算结果
cout << "计算结果的转置 ( (A*B)的转置 ):" << endl;
for (int i=0;i<cW*cH; i++){
cout << h_C[i] << " ";
if ((i+1)%cW == 0) cout << endl;
}
// 清理掉使用过的内存
free (h_A);
free (h_B);
free (h_C);
cudaFree (d_A);
cudaFree (d_B);
cudaFree (d_C);
// 释放 CUBLAS 库对象
cublasDestroy (handle);
getchar();
return 0;
}