关闭

[sklearn学习]linear_model.LinearRegression

标签: sklearn机器学习线性回归
4182人阅读 评论(0) 收藏 举报
分类:

线性回归作为一种最简单,但却是最常用的方法,将作为第一篇文章进行了解。

参数:

fit_intercept:   布尔型,默认为true

说明:是否对训练数据进行中心化。如果该变量为false,则表明输入的数据已经进行了中心化,在下面的过程里不进行中心化处理;否则,对输入的训练数据进行中心化处理

normalize布尔型,默认为false

说明:是否对数据进行标准化处理

copy_X           布尔型,默认为true

说明:是否对X复制,如果选择false,则直接对原数据进行覆盖。(即经过中心化,标准化后,是否把新数据覆盖到原数据上)

n_jobs            整型, 默认为1

说明:计算时设置的任务个数(number of jobs)。如果选择-1则代表使用所有的CPU。这一参数的对于目标个数>1(n_targets>1)且足够大规模的问题有加速作用。

返回值:

coef_              数组型变量, 形状为(n_features,)或(n_targets, n_features)

说明:对于线性回归问题计算得到的feature的系数。如果输入的是多目标问题,则返回一个二维数组(n_targets, n_features);如果是单目标问题,返回一个一维数组                               (n_features,)。

intercept_        数组型变量

说明:线性模型中的独立项。


注:该算法仅仅是scipy.linalg.lstsq经过封装后的估计器。


方法:

decision_function(X)  对训练数据X进行预测
fit(X, y[, n_jobs])                     对训练集X, y进行训练。是对scipy.linalg.lstsq的封装
get_params([deep]) 得到该估计器(estimator)的参数。

predict(X) 使用训练得到的估计器对输入为X的集合进行预测(X可以是测试集,也可以是需要预测的数据)。

score(X, y[,]sample_weight)   返回对于以X为samples,以y为target的预测效果评分。

set_params(**params)            设置估计器的参数


decision_function(X) 和predict(X)都是利用预估器对训练数据X进行预测,其中decision_function(X)包含了对输入数据的类型检查,以及当前对象是否存在coef_属性的检查,是一种“安全的”方法,而predict是对decision_function的调用。


score(X, y[,]sample_weight)    定义为(1-u/v),其中u = ((y_true - y_pred)**2).sum(),而v=((y_true-y_true.mean())**2).mean()

          最好的得分为1.0,一般的得分都比1.0低,得分越低代表结果越差。

   其中sample_weight为(samples_n,)形状的向量,可以指定对于某些sample的权值,如果觉得某些数据比较重要,可以将其的权值设置的大一些。



例子:

>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> clf.coef_
array([ 0.5,  0.5])




原文链接: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression

2
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4204次
    • 积分:54
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:0篇
    • 译文:1篇
    • 评论:0条
    文章分类
    文章存档