关闭

HDU1067 Gap

207人阅读 评论(0) 收藏 举报
分类:

Gap

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 810    Accepted Submission(s): 441


Problem Description
Let's play a card game called Gap. 
You have 28 cards labeled with two-digit numbers. The first digit (from 1 to 4) represents the suit of the card, and the second digit (from 1 to 7) represents the value of the card.

First, you shu2e the cards and lay them face up on the table in four rows of seven cards, leaving a space of one card at the extreme left of each row. The following shows an example of initial layout.



Next, you remove all cards of value 1, and put them in the open space at the left end of the rows: "11" to the top row, "21" to the next, and so on.

Now you have 28 cards and four spaces, called gaps, in four rows and eight columns. You start moving cards from this layout.



At each move, you choose one of the four gaps and fill it with the successor of the left neighbor of the gap. The successor of a card is the next card in the same suit, when it exists. For instance the successor of "42" is "43", and "27" has no successor.

In the above layout, you can move "43" to the gap at the right of "42", or "36" to the gap at the right of "35". If you move "43", a new gap is generated to the right of "16". You cannot move any card to the right of a card of value 7, nor to the right of a gap.

The goal of the game is, by choosing clever moves, to make four ascending sequences of the same suit, as follows.



Your task is to find the minimum number of moves to reach the goal layout.
 

Input
The input starts with a line containing the number of initial layouts that follow.

Each layout consists of five lines - a blank line and four lines which represent initial layouts of four rows. Each row has seven two-digit numbers which correspond to the cards.
 

Output
For each initial layout, produce a line with the minimum number of moves to reach the goal layout. Note that this number should not include the initial four moves of the cards of value 1. If there is no move sequence from the initial layout to the goal layout, produce "-1".
 

Sample Input
4 12 13 14 15 16 17 21 22 23 24 25 26 27 31 32 33 34 35 36 37 41 42 43 44 45 46 47 11 26 31 13 44 21 24 42 17 45 23 25 41 36 11 46 34 14 12 37 32 47 16 43 27 35 22 33 15 17 12 16 13 15 14 11 27 22 26 23 25 24 21 37 32 36 33 35 34 31 47 42 46 43 45 44 41 27 14 22 35 32 46 33 13 17 36 24 44 21 15 43 16 45 47 23 11 26 25 37 41 34 42 12 31
 

Sample Output
0 33 60 -1
 

Source
 

Recommend
JGShining
 




题意比较复杂,,,总之就是初始输入从第二列开始输入,然后把尾数是1的放到第一列,随后可以在空位放入空位左面那个数+1,表格中对应的那个数位置为空,因此如果尾数为7就无法移动。最终状态是规整的11到47,问最少要多少步,如果不可能就输出-1。

这题作为搜索本身很简单,就是在判重的时候需要建立hash表。建立的hash函数包含了表格中所有元素,所以不会有冲突。

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#define N 1123451
using namespace std;

struct node {
    int g[4][8];
    int step;
}tn;
int vis[N];
int gethash(node &t)
{
    int ans=0;
    for(int i=0;i<4;i++)
    {
        for(int j=0;j<8;j++)
        {
            ans=ans*7+t.g[i][j]%10;
            ans=ans*7+t.g[i][j]/10;
        }
    }
    return (ans&0x7fffffff)%N;
}

bool judge (node a)
{
    for(int i=0;i<4;i++)
    {
        for(int j=0;j<7;j++)
        {
            if(a.g[i][j]!=(i+1)*10+j+1)
                return false;
        }
    }
    return true;
}

void change(node &t,int num)
{
    for(int i=0;i<4;i++)
    {
        for(int j=0;j<8;j++)
        {
            if(t.g[i][j]==num+1)
            {
                t.g[i][j]=0;
                return ;
            }
        }
    }
}

int bfs()
{
    queue <node> q;
    node buf,next;
    int t;
    tn.step=0;
    memset(vis,0,sizeof(vis));
    for(int i=0;i<4;i++)
    {
        tn.g[i][0]=(i+1)*10+1;
    }
    vis[gethash(tn)]=1;
    q.push(tn);
    while(!q.empty())
    {
        buf=q.front();q.pop();
        if(judge(buf))
            return buf.step;
        for(int i=0;i<4;i++)
            for(int j=0;j<8;j++)
            {
                if(buf.g[i][j]==0&&buf.g[i][j-1]!=0&&buf.g[i][j-1]%10!=7)
                {
                    next=buf;next.step++;
                    change(next,next.g[i][j-1]);
                    next.g[i][j]=next.g[i][j-1]+1;
                    t=gethash(next);
                    if(!vis[t])
                    {
                        vis[t]=1;
                        q.push(next);
                    }
                }
            }
    }
    return -1;
}

int main()
{
    int K;
    cin>>K;
    while(K--)
    {
        for(int i=0;i<4;i++)
        {
            for(int j=1;j<8;j++)
            {
                scanf("%d",&tn.g[i][j]);
                if(tn.g[i][j]%10==1) tn.g[i][j]=0;
            }
        }
        printf("%d\n",bfs());
    }
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:23248次
    • 积分:1685
    • 等级:
    • 排名:千里之外
    • 原创:148篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条