HUST - 1017 Exact cover (Dancing Links)

There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
Input
There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
Output
First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
Sample Input
6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7
Sample Output
3 2 4 6


模版题。关于DLX的详细解说,请看博客文章DLX。

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>

using namespace std;
typedef long long LL;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 1000+7;
const int MAXP = 1e6+7;

struct DLX
{
    int n,m,Size;
    int up[MAXP],down[MAXP],left[MAXP],right[MAXP],row[MAXP],col[MAXP];
    int h[MAXN],s[MAXN];
    int ansd,ans[MAXN];
    //初始化
    void init(int _n,int _m)
    {
        n = _n;
        m = _m;
        for(int i = 0; i <= m; ++i)
        {
            s[i] = 0;
            up[i] = down[i] = i;
            left[i] = i-1;
            right[i] = i+1;
        }
        right[m] = 0;
        left[0] = m;
        Size = m;
        for(int i = 1; i <= n; ++i)h[i] = -1;
    }
    //连接
    void Link(int r,int c)
    {
        ++s[col[++Size] = c];
        row[Size] = r;
        down[Size] = down[c];
        up[down[c]] = Size;
        up[Size] = c;
        down[c] = Size;
        if(h[r] < 0)h[r] = left[Size] = right[Size] = Size;
        else
        {
            right[Size] = right[h[r]];
            left[right[h[r]]] = Size;
            left[Size] = h[r];
            right[h[r]] = Size;
        }
    }
    //删除c列
    void Remove(int c)
    {
        left[right[c]] = left[c];
        right[left[c]] = right[c];
        for(int i = down[c]; i != c; i = down[i])
            for(int j = right[i]; j != i; j = right[j])
        {
            up[down[j]] = up[j];
            down[up[j]] = down[j];
            --s[col[j]];
        }
    }
    //撤销删除c列
    void Resume(int c)
    {
        for(int i = up[c]; i != c; i = up[i])
            for(int j = left[i]; j != i; j = left[j])
        {
            ++s[col[up[down[j]] = down[up[j]] = j]];
        }
        right[left[c]] = left[right[c]] = c;
    }
    //递归判断,d为深度
    bool Dance(int d)
    {
        if(right[0] == 0)
        {
            ansd = d;
            return 1;
        }
        int c = right[0];
        for(int i = right[0]; i; i = right[i])
            if(s[i] < s[c])c = i;
        Remove(c);
        for(int i = down[c]; i != c; i = down[i])
        {
            ans[d] = row[i];
            for(int j = right[i]; j != i; j = right[j])Remove(col[j]);
            if(Dance(d+1))return 1;
            for(int j = left[i]; j != i; j =left[j])Resume(col[j]);
        }
        Resume(c);
        return 0;
    }
};

DLX g;
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        g.init(n,m);
        for(int i = 1; i <= n; ++i)
        {
            int num,j;
            scanf("%d",&num);
            while(num--)
            {
                scanf("%d",&j);
                g.Link(i,j);
            }
        }
        if(!g.Dance(0))puts("NO");
        else
        {
            printf("%d",g.ansd);
            for(int i = 0; i < g.ansd; ++i)printf(" %d",g.ans[i]);
            puts("");
        }
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值