-------------------数论------------------
文章平均质量分 71
UMR小豪
这个作者很懒,什么都没留下…
展开
-
poj3292 Semi-prime H-numbers
Semi-prime H-numbersTime Limit: 1000MS Memory Limit: 65536KTotal Submissions: 8845 Accepted: 3896DescriptionThis problem is based on an exercise of David Hilber原创 2016-08-22 11:40:36 · 428 阅读 · 0 评论 -
HDU3625 第一类斯特林数
第一类斯特灵数把一个包含n个元素的集合分成k个环排列的方法数: 初始值S(n,0)=0,S(1,1)=1.S_{(n,0)} = 0,S_{(1,1)} = 1. S(n+1,k)=S(n,k−1)+S(n,k)∗nS_{(n+1,k)}=S_{(n,k-1)}+S_{(n,k)}*n 假设已经推出了n个元素分成k个环的方法数以及n个元素分成k-1个环的元素,我们考虑第n+1个元素,一种情况是原创 2017-08-09 20:10:26 · 293 阅读 · 0 评论 -
HDU Counting Divisors
官方题解:设n=p_1^{c_1}p_2^{c_2}...p_m^{c_m}n=p1c1p2c2...pmcm,则d(n^k)=(kc_1+1)(kc_2+1)...(kc_m+1)d(nk)=(kc1+1)(kc2+1)...(kcm+1)。枚举不超过\sqrt{r}√r的所有质数pp,再枚举区间[l,原创 2017-08-03 19:12:05 · 256 阅读 · 0 评论 -
URAL 1123 Square Root(计算二次剩余)
The number x is called a square root of a modulo n (root( a, n)) if x* x = a (modn). Write the program to find the square root of number a by given modulo n.InputOne number K in the first原创 2017-08-05 18:07:29 · 510 阅读 · 0 评论 -
Count primes
Count primesTime Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 521 Accepted Submission(s): 221Problem DescriptionEasy question!原创 2016-09-19 16:28:21 · 437 阅读 · 0 评论 -
组合数取模
组合数取模在ACM竞赛中是一个很重要的问题,很多选手因为数据太大而束手无策,今天就来详细讲解它。 组合数取模就是求的值,当然根据,和的取值范围不同,采取的方法也不一样。 接下来,我们来学习一些常见的取值情况 (1)和 这个问题比较简单,组合数的计算可以靠杨辉三角,那么由于和的范围小,直接两层循环即可。 (2)转载 2017-05-08 10:41:20 · 386 阅读 · 0 评论 -
数论总结
数论总结欧拉定理求欧拉函数素数筛Miller_Rabin 算法进行素数测试 pollard_rho 算法进行质因数分解求1n的素数的个数1e11计算二次剩余计算离散对数原根组合数学第一类斯特林数第二类斯特林数Lucas定理数论总结欧拉定理aφ(n)≡1(modn)a^{\varphi(n)}\equiv 1\pmod nφ(n)\varphi(n) 为欧拉函数使用条件为g原创 2017-08-19 09:37:22 · 227 阅读 · 0 评论 -
Miller_Rabin 算法进行素数测试 pollard_rho 算法进行质因数分解 poj1811Prim Test
需要的板子://****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以判断 <2^63的数//****************************************************************const int S转载 2017-08-04 22:19:44 · 337 阅读 · 0 评论 -
poj2417 Discrete Logging (计算离散对数)
Given a prime P, 2 31, an integer B, 2 BL == N (mod P)InputRead several lines of input, each containing P,B,N separated by a space.OutputFor each line print the logarithm on a sepa原创 2017-08-05 18:22:48 · 399 阅读 · 0 评论 -
poj1284 Primitive Roots
We say that integer x, 0 i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. Wr原创 2017-08-05 21:12:57 · 299 阅读 · 0 评论 -
HDU 4992 Primitive Roots(求出n的所有原根)
题意:求出n的所有原根,不存在原根输出-1。原根的定义题目已经给出,对于n的原根x,则满足x的y次幂模n等于1的最小y是n的欧拉函数值phi(n),也就是小于等于n且与n互质的个数。来自维基百科:一个是如果gcd(g, m)=1,且g^d=1(mod m),则d为phi(m)的一个因子。换句话说如果g是m的原根,那么对于phi(m)的所有因子d(不包含phi(m)本身),g^d转载 2017-08-06 00:33:58 · 446 阅读 · 0 评论 -
F. Product transformation
嗯,序列写一写可以发现,从最后面开始相邻的差都是杨辉三角。然后走到头,前面还有剩余的话就是2m2^m。啊这里说的是系数。然后我们可以求出循环节来。求出系数来之后先模循环节。循环节其实就是ax==1modma^x == 1\mod m中的x。然后快速幂搞一下就可以了。#include <bits/stdc++.h>using namespace std;typedef long long LL;c原创 2017-09-12 13:25:06 · 223 阅读 · 0 评论 -
HDU2643 Rank 第二类斯特林数
第二类斯特林数把一个包含n个元素的集合分成k个非空子集的方法数: 初始值: S2(n,0)=0,S2(n,k)=0(n<k)S_{2(n,0)}=0,S_{2(n,k)}=0(n<k) S2(n,1)=S2(n,n)=1S_{2(n,1)}=S_{2(n,n)}=1 递推式: S2(n,k)=S2(n−1,k−1)+S2(n−1,k)∗kS_{2(n,k)}=S_{2(n-1,k-1)}+原创 2017-08-09 21:41:47 · 1314 阅读 · 0 评论 -
HDU4565 So Easy!
A sequence S n is defined as: Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate S n. You, a top coder, say: So easy! Input There are several原创 2017-08-07 00:34:00 · 323 阅读 · 0 评论 -
poj1845 Sumdiv
SumdivTime Limit: 1000MS Memory Limit: 30000KTotal Submissions: 18488 Accepted: 4674DescriptionConsider two natural numbers A and B. Let S be the sum of all nat原创 2016-08-22 19:33:43 · 297 阅读 · 0 评论 -
费马检测(判断一个数是不是素数)
#include using namespace std; typedef long long ll using namespace std; ll Quick_Mod(ll a, ll b, ll mod)//快速幂 { ll res = 1,term = a % mod; while(b) { if(b原创 2017-02-22 19:52:33 · 3591 阅读 · 0 评论 -
poj1248 Primitive Roots
Primitive RootsTime Limit: 1000MS Memory Limit: 10000KTotal Submissions: 4267 Accepted: 2501DescriptionWe say that integer x, 0 i mod p) | 1 <= i <= p-1 } is eq原创 2017-04-08 10:51:23 · 346 阅读 · 0 评论 -
Problem I: 约素
Problem I: 约素Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1847 Solved: 480Description判断一个正整数n的约数个数是否为p,其中p是素数。Input第一行给测试总数T(T 接下来有T行,每行有两个数字n(1 Output每组测试数据输出一行,如果n原创 2017-03-22 22:04:05 · 381 阅读 · 0 评论 -
Cf 406 A. The Monster
A. The Monstertime limit per test1 secondmemory limit per test256 megabytesinputstandard inputoutputstandard outputA monster is chasing after Rick and Morty on原创 2017-03-24 21:34:42 · 761 阅读 · 0 评论 -
poj2115 C Looooops(扩展欧几里得)
C LooooopsTime Limit: 1000MS Memory Limit: 65536KTotal Submissions: 23143 Accepted: 6357DescriptionA Compiler Mystery: We are given a C-language style for loop(原创 2016-08-23 15:43:06 · 446 阅读 · 0 评论 -
poj2635 The Embarrassed Cryptographer(高精度 同余取模)
The Embarrassed CryptographerTime Limit: 2000MS Memory Limit: 65536KTotal Submissions: 13831 Accepted: 3762DescriptionThe young and very promising cryptographer原创 2016-08-20 20:17:44 · 445 阅读 · 0 评论 -
1202: GCD
DescriptionInput The first line is an positive integer T . (1<=T<= 10^3) indicates the number of test cases. In the next T lines, there are three positive integer n, m, p (1<= n,m,p<=原创 2017-04-25 16:16:18 · 398 阅读 · 0 评论 -
URAL - 1932
Davy Jones: You've been captain of the Black Pearl for 13 years. That was our agreement. Jack: Technically I was only captain for two years, then I was mutinied upon. Davy Jones: Then you were a原创 2017-06-16 21:52:54 · 371 阅读 · 0 评论 -
poj3233 Matrix Power Series
Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + … + A^k.S=A+A2+A3+…+Ak.S = A + A^2 + A^3 + … + A^k.Input The input contains exactly one test case. The first line of i原创 2017-08-09 00:10:40 · 235 阅读 · 0 评论 -
LinghtOJ1132 Summing up Powers
Given N and K, you have to find(1K+2K+3K+...+NK)%232(1^K + 2^K + 3^K + ... + N^K) \% 2^{32}Input Input starts with an integer T (≤ 200), denoting the number of test cases.Each case contains two intege原创 2017-08-08 00:01:19 · 354 阅读 · 1 评论 -
数论总结
数论总结欧拉定理aφ(n)≡1(modn)" role="presentation" style="position: relative;">aφ(n)≡1(modn)aφ(n)≡1(modn)a^{\varphi(n)}\equiv 1\pmod nφ(n)" role="presentation" style="position: r原创 2017-08-18 22:00:10 · 417 阅读 · 0 评论