基于之前的模拟退火和遗传算法:
http://blog.csdn.net/qq_34861102/article/details/77806124
针对遗传算法和模拟退火算法的不足,这里给出了一个机遇模拟退火的遗传算法
原文:
http://blog.csdn.net/qq_34861102/article/details/77899555
clear
firstbestfit = 0;
popsize=20; %群体大小
chromlength=1; %字符串长度(个体长度)
pc = 0.6; %交叉概率
pm = 0.001; %变异概率
pop = initpop(popsize,chromlength); %随机产生初始群体
t=90; %初始温度

本文针对遗传算法和模拟退火算法的局限性,提出了一种结合两者的优化算法。通过将模拟退火引入遗传算法,旨在改善算法的搜索性能。尽管在特定例子中,实际效果可能不优于纯遗传算法,但这种融合策略为解决复杂优化问题提供了新的思路。
最低0.47元/天 解锁文章
9053

被折叠的 条评论
为什么被折叠?



