目录:
题意:
有两种操作,一种是给某个数进行加法,一种是求在指定区间中每个数的和
分析:
我们可以使用线段树去做,但这样编写的难度、时间复杂度以及空间复杂度无疑是十分令人头疼的。
所以我们用到了树状数组——请看代码
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
inline LL read() {
LL d=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
return d*f;
}
int c[500001];
int n=read(),m=read();
int lowbit(int x)
{
return x&(-x);
}
void change(int k,int delta)//对c进行改变
{
while(k<=n)
{
c[k]+=delta;
k+=lowbit(k);
}
return;
}
int t;
int getsum(int k)//求出answer
{
t=0;
while(k>0)
{
t+=c[k];
k-=lowbit(k);
}
return t;
}
int main()
{
int tf,x,y;
for(int i=1;i<=n;i++)
change(i,read());//先对c初始化
for(int i=1;i<=m;i++)
{
tf=read();x=read();y=read();
if(tf==1)
change(x,y);
else
//求x~y的区间,可以用1~y的区间-1~(x-1)的区间求解
printf("%d\n",getsum(y)-getsum(x-1));
}
return 0;
}