等比数列二分求和

AcDreamer博客原文链接:http://blog.csdn.net/acdreamers/article/details/7851144


二分解决自然是因为幂次太大,用公式远超int范围,无法求解


今天我们学习如何有效地求表达式的值。对于这个问题,用二分解决比较好。

 

(1)时,

(2)时,那么有

    

(3)时,那么有

    

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
const int M = 1000000007;
typedef long long LL;

LL power(LL a,LL b)
{
    LL ans = 1;
    a %= M;
    while(b)
    {
        if(b & 1)
        {
            ans = ans * a % M;
            b--;
        }
        b >>= 1;
        a = a * a % M;
    }
    return ans;
}

LL sum(LL a,LL n)
{
    if(n == 1) return a;
    LL t = sum(a,n/2);
    if(n & 1)
    {
        LL cur = power(a,n/2+1);
        t = (t + t * cur % M) % M;
        t = (t + cur) % M;
    }
    else
    {
        LL cur = power(a,n/2);
        t = (t + t * cur % M) % M;
    }
    return t;
}

int main()
{
    LL a,n;
    while(cin>>a>>n)
        cout<<sum(a,n)<<endl;
    return 0;
}

题目:http://poj.org/problem?id=3233

 

题意:矩阵求和

 

矩阵也满足上述等比数列二分求和方式

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N = 35;
struct Matrix
{
    int m[N][N];
};
Matrix I;
int n, k, MOD;
Matrix add(Matrix a, Matrix b)
{
    Matrix c;
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            c.m[i][j] = (a.m[i][j] + b.m[i][j]) % MOD;
    return c;
}
Matrix multi(Matrix a, Matrix b)
{
    Matrix c;
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
        {
            c.m[i][j] = 0;
            for(int k = 0; k < n; k++)
                c.m[i][j] += a.m[i][k] * b.m[k][j];
            c.m[i][j] %= MOD;
        }
    return c;
}
Matrix Power(Matrix A, int n)
{
    Matrix ans = I, p = A;
    while(n)
    {
        if(n & 1)
            ans = multi(ans, p);
        n >>= 1;
        p = multi(p, p);
    }
    return ans;
}
Matrix sum(Matrix A, int k)
{
    if(k == 1) return A;
    Matrix t = sum(A, k / 2);
    if(k & 1)
    {
        Matrix cur = Power(A, k/2 + 1);
        t = add(t, multi(t, cur));
        t = add(t, cur);
    }
    else
    {
        Matrix cur = Power(A, k/2);
        t = add(t, multi(t, cur));
    }
    return t;
}
int main()
{
    while(scanf("%d%d%d", &n, &k, &MOD) != EOF)
    {
        Matrix A;
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
            {
                scanf("%d", &A.m[i][j]);
                A.m[i][j] %= MOD;
                I.m[i][j] = (i == j);
            }
        Matrix ans = sum(A, k);
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                printf("%d%c", ans.m[i][j], j == n - 1 ? '\n' : ' ');
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值