Recommender Systems Handbook读书笔记之第四章(2)

承接 Recommender Systems Handbook读书笔记之第四章(1),本篇作为第二部分主要讲了user-based CF和item-based CF计算方法框架,以及两种方法之间的对比。

如果可以预测出用户u对item i的评价R(ui),则可以根据R(ui)对用户进行推荐,因此主要问题转化为了对R(ui)的预测。

Ni(u):表示对item i有过评价的user u的近邻。

R(vi):表示user v对item i的评价。

W(uv):表示user u与user v之间的相似程度。

S(ij): 表示item i与item j之间的相似程度。

Nu(i):表示对item i有过评价的user u的所有有评价的item。

User-based Rating Prediction:

User-based CF的基本思想就是给用户推荐与其有相似兴趣的近邻喜欢的item,基于此可以根据user u的近邻对item i的评价来预测u对item i的评价。因此user u对item i的评价可以通过以下方式得到:


上面的公式通过计算user u的近邻对item i的评价的平均值,以此来作为user u对item i的预测评价值。上面的方法可以大体上预测出u与i的评价值,但是上面的方面没有考虑到不同的user v与user u之间的兴趣相似程度不一样,一般来说,兴趣更相似的近邻对item i的评价应该具有更有效的说服力,通过改进可以得到下面的的计算方法:


上面的计算公式中加入W(uv),考虑了近邻用户与user u之间的相似程度的因素,该方面比起前面的方法有了一定的改进。在CF的推荐方法中经常会遇到这样一个问题:不同user对item的评价标准不一样,例如user A对自己不喜欢的电影一般能给7分,自己喜欢的电影给8分,而user B对于自己不喜欢的电影只给5分,对于自己喜欢的电影给9分。显然,将user对item的评价直接用来计算是不太合理,需要对其进行归一化(normalization)。

h[u(vi)]表示user u对item i评价的归一化函数。因此可得到新更准确的R(ui)预测方法:


h-1表示归一化函数的逆函数。 

Item-based Rating Prediction

如前一篇所述,item-based CF的基本思想是给用户推荐与其之前所喜欢的相似的item。根据前面类似的分析思路可以得到item-based方法下user u对item i的评价预测方法。

User-based与Item-based方法比较:

1、  准确率:在user-based的方法中,通常是通过不同用户对相同item的评价来计算用户之间的相似度。假设有1000个user对100个item做出了评价,假设用户评价在商品上都是一致分布的,那么每个用户潜在的邻居为650个,但是不同user对item的共同评价数仅仅为1,数据稀疏问题比较严重。在item-based的方法中,通常通过同一个用户对不同item的评分来计算item之间的相似度,潜在的平均邻居数位99,用于计算相似度的共同点击数为10。在大多数情况下,可信度较高的邻居,即使规模较少,也比规模更大的可信度不高的邻居更有用。在amazon的推荐系统中,用户数量比商品数量多很多,实践证明,item-based的方法是更有效的。

2、  效率:在大部分的系统中,user的数量是远超item的数量,因此item-based的方法所需内存远小于user-based的方法。

3、  稳定性:如果item数量的相对比user更稳定,系统中更适合采用item-based的方法。因为在一段时间内计算的item之间的相似性可以用于推荐给new user。反则,则适合用user-based的方法,例如在新闻推荐中。

4、  可解释性:item-basedCF相对user-based CF方法的可解释性更好,因为用户清楚自己之前的兴趣爱好,而用户可能并不认识与他兴趣相似的邻居。

5、  新颖性:由于item-basedCF是推荐之前相似的物品,因此新颖性相对user-based CF要差一些。


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值