- 博客(5)
- 收藏
- 关注
转载 centos 下搭建lighttpd php mysql环境
一、安装相关软件包[root@web ~]# yum -y install pcre pcre-devel bzip2-devel zlib zlib-devel mysql-server php php-mysql 二、编译并安装lighttpd[root@web ~]# tar zxf lighttpd-1.4.30.tar.gz [root@web ~]# cd li
2014-06-17 17:20:58 617
原创 Recommender Systems Handbook读书笔记之第四章(3)
承接上一篇Recommender Systems Handbook读书笔记之第四章(2),记录一下本章的最后一部分。基于近邻的推荐方法,有三个重要技术点需要关注:1)评价的归一化;2)相似度权值计算方法;3)近邻的选择。1、评价归一化当用户对item进行评价打分时,每个人心目中的标准是不一样的,比如user A对与一般喜欢的item通常打6分,而user B对与一般喜欢的分值则在8
2012-12-24 18:23:44 605
原创 Recommender Systems Handbook读书笔记之第四章(2)
承接 Recommender Systems Handbook读书笔记之第四章(1),本篇作为第二部分主要讲了user-based CF和item-based CF计算方法框架,以及两种方法之间的对比。如果可以预测出用户u对item i的评价R(ui),则可以根据R(ui)对用户进行推荐,因此主要问题转化为了对R(ui)的预测。Ni(u):表示对item i有过评价的user u的近邻。
2012-12-18 19:24:47 591
原创 Recommender Systems Handbook读书笔记之第四章(1)
Recommender Systems Handbook第四章为A Comprehensive Survey of Neighborhood-based Recommendation Methods,主要讲述基于近邻的推荐方法。读完第一部分,感觉文中提到的基于近邻的方法也就是协同过滤,记下一些重要的东西。Collaborative filtering 的方法基于这样的一个假设:如果
2012-12-18 16:04:57 844
原创 PLSA模型简介
PLSA作为一种主题模型,提供了一种文本语义分析的手段,在自然语言处理中有很多应用,例如广告推荐、文本分类、改善搜索相关性等。关于PLSA的应用场景在下一篇博客中介绍,这里先对模型作一个简单的介绍,也算是对PLSA的推导过程做一个梳理。PLSA:Probabilistic LatentSemantic Analysis,也即浅层概率语义分析,大体来讲就是通过概率手段计算潜在主题与word、do
2012-11-18 14:57:21 3055
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人