PLSA作为一种主题模型,提供了一种文本语义分析的手段,在自然语言处理中有很多应用,例如广告推荐、文本分类、改善搜索相关性等。关于PLSA的应用场景在下一篇博客中介绍,这里先对模型作一个简单的介绍,也算是对PLSA的推导过程做一个梳理。
PLSA:Probabilistic LatentSemantic Analysis,也即浅层概率语义分析,大体来讲就是通过概率手段计算潜在主题与word、document之间的关系。
传统的bag of words模型,通过word之间的匹配来计算文档之间的距离,对于汉语中的一词多义、同义词现象解决起来相对乏力。主题模型通过引入潜在主题维度,将文档投影到潜在主题上,将字面上不同的文档从语义上进行关联。
P(d):在海量文档中选出文档d的概率
P(z|d):文档d属于主题z的概率
p(w|z):在主题z的中选中单词w的概率
因此可以得出以下等式:
在文档di中选出单词wj的概率:
根据条件概率可以得到:
文档集合被选中的概率:
对p求极大似然估计可得到: