Mozilla宣布5月停止支持Firefox OS

本文转载至:http://www.pcpop.com/doc/2/2194/2194731.shtml

Mozilla宣布5月停止支持Firefox OS手机

Engadget中文站2月6日报道

严格意义上讲,Mozilla的Firefox OS还并未正式死亡,但对于搭载了该系统的智能手机而言,情况可能的确如此。这家公司日前通过邮件宣布,他们将在发布Firefox OS 2.6(目前定于5月末)之后停止支持该系统,以便让更多的员工去探索Firefox OS在物联网领域里的位置。

实际上,Mozilla之前就已经透露了相关的计划。在去年12月的Mozlando开发者活动中,Mozilla联网设备高级副总裁Ari Jaaksi就曾提到,公司在智能手机上的实验将会很快结束。“从低端智能手机到高清电视,Firefox OS展示了网页的灵活性,”他指出,“但由于无法提供最佳的用户体验,我们将停止通过运营商渠道提供Firefox OS智能手机。”

Mozilla可能已经不打算再继续开发手机版Firefox OS了,但这并不意味着第三方应用开发者的大门已经关闭。虽然Mozilla将停止在应用商店当中接收Android、桌面和平台应用,但这并不包括Firefox OS应用。

除了智能手机之外,Mozilla还拥有其他一些Firefox OS设备,比如松下的智能电视系列。

实际上,把Firefox OS定位为Android/iOS的竞争者这个想法从一开始就注定了失败。这个平台把HTML5作为基础,这意味着用户将永远无法获得和其他移动平台类似的丰富应用体验——即便网页应用的品质和性能自Firefox OS发布之后取得了大幅提升。为发展中市场建立一个超廉价智能手机平台的确是个高尚的想法,但考虑到市面上存在售价更低的Android手机,这从经济的角度看可能并不明智。(编译:肖恩)


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值