粒子群算法实例-求解函数极值

原创 2017年03月19日 10:05:14

前面介绍了《粒子群算法》的基本原理,这里结合实例,看看粒子群算法是怎样解决实际问题的。采用过的函数和《遗传算法实例》中的一样:

f(x)=x+10sin5x+7cos4x

求其在区间[-10,10]之间的最大值。下面是该函数的图像:
这里写图片描述
在本例中,我们可以把x作为个体的染色体,函数值f(x)作为其适应度值,适应度越大,个体越优秀,最大的适应度就是我们要求的最大值。
直接看代码吧(直接看注释就能看懂)。

# -*- coding: utf-8 -*-

import numpy as np

# 粒子(鸟)
class particle:
    def __init__(self):
        self.pos = 0  # 粒子当前位置
        self.speed = 0
        self.pbest = 0  # 粒子历史最好位置


class PSO:
    def __init__(self):
        self.w = 0.5  # 惯性因子
        self.c1 = 1  # 自我认知学习因子
        self.c2 = 1  # 社会认知学习因子
        self.gbest = 0  # 种群当前最好位置
        self.N = 20  # 种群中粒子数量
        self.POP = []  # 种群
        self.iter_N = 100  # 迭代次数

    # 适应度值计算函数
    def fitness(self, x):
        return x + 10 * np.sin(5 * x) + 7 * np.cos(4 * x)

    # 找到全局最优解
    def g_best(self, pop):
        for bird in pop:
            if bird.fitness > self.fitness(self.gbest):
                self.gbest = bird.pos

    # 初始化种群
    def initPopulation(self, pop, N):
        for i in range(N):
            bird = particle()
            bird.pos = np.random.uniform(-10, 10)
            bird.fitness = self.fitness(bird.pos)
            bird.pbest = bird.fitness
            pop.append(bird)

        # 找到种群中的最优位置
        self.g_best(pop)

    # 更新速度和位置
    def update(self, pop):
        for bird in pop:
            # 速度更新
            speed = self.w * bird.speed + self.c1 * np.random.random() * (
                bird.pbest - bird.pos) + self.c2 * np.random.random() * (
                self.gbest - bird.pos)

            # 位置更新
            pos = bird.pos + speed

            if -10 < pos < 10: # 必须在搜索空间内
                bird.pos = pos
                bird.speed = speed
                # 更新适应度
                bird.fitness = self.fitness(bird.pos)

                # 是否需要更新本粒子历史最好位置
                if bird.fitness > self.fitness(bird.pbest):
                    bird.pbest = bird.pos

    # 最终执行
    def implement(self):
        # 初始化种群
        self.initPopulation(self.POP, self.N)

        # 迭代
        for i in range(self.iter_N):
            # 更新速度和位置
            self.update(self.POP)
            # 更新种群中最好位置
            self.g_best(self.POP)


pso = PSO()
pso.implement()

for ind in pso.POP:
    print("x=", ind.pos, "f(x)=", ind.fitness)

某一次执行中生成的种群结果:
x= 7.44390041845 f(x)= 2.34326279816
x= 9.48378207609 f(x)= 13.3821268397
x= 6.3672261374 f(x)= 17.0548851104
x= 7.85674414126 f(x)= 24.855362869
x= 7.85674414216 f(x)= 24.855362869
x= 7.85674414201 f(x)= 24.855362869
x= 7.85674414185 f(x)= 24.855362869
x= 8.02319542929 f(x)= 20.1093330013
x= 7.85674414327 f(x)= 24.855362869
x= 7.85674414414 f(x)= 24.855362869
x= 7.85674414288 f(x)= 24.855362869
x= 7.85674414296 f(x)= 24.855362869
x= 7.85674414178 f(x)= 24.855362869
x= 7.85674414174 f(x)= 24.855362869
x= 7.8567441494 f(x)= 24.855362869
x= 6.44588532539 f(x)= 19.2820411821
x= 7.85674414041 f(x)= 24.855362869
x= 9.93067628809 f(x)= 1.12241685006
x= 7.8567441425 f(x)= 24.855362869
x= 8.81867117742 f(x)= 4.6512749143
得到的最优解结果为:
X=7.85674414174 f(x)=24.855362869
从图像上看符合要求。其结果图像如下,红色点表示种群中个体的位置。

# 绘图代码
import matplotlib.pyplot as plt
def func(x):
    return x + 10 * np.sin(5 * x) + 7 * np.cos(4 * x)

x = np.linspace(-10, 10, 10000)
y = func(x)

scatter_x = np.array([ind.pos for ind in pso.POP])
scatter_y = np.array([ind.fitness for ind in pso.POP])
plt.plot(x, y)
plt.scatter(scatter_x, scatter_y, c='r')
plt.show()

这里写图片描述

版权声明:无需授权,可任意转载。

算法理解-粒子群算法(一个计算例子)

沿用上一篇中遗传算法的求解例子,其中代码参考游皓麟的R语言预测实战(这是一本好书): 遗传算法:http://blog.csdn.net/qq_27755195/article/details/56...

自话粒子群算法(超简单实例)

简介     上次在自话遗传算法中提到后期会写两篇关于粒子群算法和蚁群算法的博文,所以这次给大家带来的是我对粒子群的一些理解,并附带一个相当简单的实例去描述这个算法,我会尽力通俗易懂的把整个算法描述...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

算法篇----简易版的粒子群(PSO)实现(Matlab语言)

前言     粒子群算法实现起来并不是很难,算法思想可以参加我上一篇博文,不多说了。好了,Matlab版的粒子群走起。 1 定义变量     粒子群算法有很多参数,做实验的时候会纠结在参数问题上,这里...

自话粒子群算法(超简单实例)

简介     上次在自话遗传算法中提到后期会写两篇关于粒子群算法和蚁群算法的博文,所以这次给大家带来的是我对粒子群的一些理解,并附带一个相当简单的实例去描述这个算法,我会尽力通俗易懂的把整个算法描述一...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

粒子群算法求函数极值

粒子群算法是群智能算法中的一种,除此之外还有其他的群智能算法,如蚁群算法、猴群算法、鱼群算法等等。本文是关于粒子群算法的。所有的群智能算法都是通过模拟自然界中的生物群体的行为来解决问题的一种思想,同遗...

优化算法——粒子群算法(PSO)

一、粒子群算法的概述 二、粒子群算法的流程

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:粒子群算法实例-求解函数极值
举报原因:
原因补充:

(最多只允许输入30个字)