指数分布的期望和方差推导

从前期的文章《泊松分布》中,我们知道泊松分布的分布律是:

P(X(t)=k)=(λt)keλtk!

λ是单元时间内事件发生的次数。如果时间间隔t内事件发生的次数为0,则:
P(X>t)=(λt)0eλt0!=eλt

反过来,在时间间隔t内发生事件的概率,就是1减去上面的值:
P(X<=t)=1eλt

这就变成了时间间隔t在参数λ下的分布函数。根据概率论知识,我们知道,分布函数是概率密度函数从负无穷到正无穷上的积分。对上述的分布函数进行求导,得到:
f(t)=λeλt

这就是 《指数分布》的概率密度函数。也就是说指数分布是可以从泊松分布推导出来的。

对于指数分布的期望和方差,推导如下:
首先,指数分布属于连续型随机分布,因此,其期望E(X)为:

E(X)=|x|f(x)dx=0xf(x)dx=0xλeλxdx=1λ0λxeλxdλx

u=λx ,则:
E(X)=1λ0ueudu=1λ[(euueu)|(,0)]=1λ

对于指数分布的方差D(X):
D(X)=E(X2)(E(X))2

其中:
E(X2)=|x2|f(x)dx=0x2f(x)dx=0x2λeλxdx

E(X2)=1λ20λxλxeλxdλx

u=λx ,则:
E(X2)=1λ20u2eudu=1λ2[(2eu2ueuu2eu)|(,0)]=1λ22=2λ2

所以:
D(X)=E(X2)(E(X))2=2λ2(1λ)2=1λ2

逆高斯分布是一种连续概率分布,也被称为高斯逆变换或者高斯反函数。它的概率密度函数可以表示为: f(x) = (1/√(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) 其中,μ是均值,σ^2是方差。 逆高斯分布的矩母函数推导如下: 首先,我们定义逆高斯分布的矩母函数为M(t),即: M(t) = E[e^(tx)] 其中,E[ ]表示期望运算。 我们可以将逆高斯分布的概率密度函数代入到矩母函数中,得到: M(t) = ∫[(-∞)到(+∞)] e^(tx) * f(x) dx 将概率密度函数代入后,可以得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] e^(tx) * exp(-(x-μ)^2 / (2σ^2)) dx 接下来,我们对上式进行化简。 首先,我们可以将指数项e^(tx)e^(-(x-μ)^2 / (2σ^2))合并,并利用指数函数的性质进行变换,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-(x-μ)^2 / (2σ^2) + tx) dx 接下来,我们将指数项进行展开,并利用高斯函数的性质进行变换,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-(x^2 - 2μx + μ^2 - 2σ^2tx + t^2σ^2x^2) / (2σ^2)) dx 继续化简,可以得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-((1 - t^2σ^2)x^2 - 2(μ + σ^2t)x + μ^2) / (2σ^2)) dx 接下来,我们可以将指数项中的二次项一次项进行配方,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-((x - (μ + σ^2t)/(1 - t^2σ^2))^2 - ((μ + σ^2t)/(1 - t^2σ^2))^2 + μ^2) / (2σ^2)) dx 继续化简,可以得到: M(t) = (1/√(2πσ^2)) * exp(((μ + σ^2t)/(1 - (μ + σ^2t)/(1 - t^2σ^2))^2) / (2σ^2)) dx 最后,我们可以利用高斯分布的性质,将上式中的积分项化简为1,得到: M(t) = (1/√(2πσ^2)) * exp(((μ + σ^2t)/(1 - t^2σ^2))^2 - μ^2 / (2σ^2)) 这就是逆高斯分布的矩母函数推导的结果。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值