粒子群算法实例--求函数极值

本文通过一个实例展示了如何应用粒子群算法来寻找函数在[-10, 10]区间内的最大值。经过程序执行,找到了最优解x=7.85674414,对应的函数值f(x)=24.855362869。文章还包含了绘图代码和执行结果。" 102980845,8160527,HikariCP实战指南,"['Java', '数据库开发', '连接池', 'HikariCP', '性能调优']
摘要由CSDN通过智能技术生成

优化对象:

                 

求该函数在[-10, 10]区间的最大值。下面是该函数图像

在本例中,我们可以把x看作是粒子,函数值f(x)看作是适应度值(即粒子到最优对象的距离),适应度值越大(即粒子到最优对象越小), 最大的适应度就是我们要求的最大值。

# -*- coding: utf-8 -*-

import numpy as np

# 粒子(鸟)
class particle:
    def __init__(self):
        self.pos = 0  # 粒子当前位置
        self.speed = 0
        self.pbest = 0  # 粒子历史最好位置


class PSO:
    def __init__(self):
        self.w = 0.5  # 惯性因子
        self.c1 = 1  # 自我认知学习因子
        self.c2 = 1  # 社会认知学习因子
        self.gbest = 0  # 种群当前最好位置
        self.N = 20  # 种群中粒子数量
        self.POP = []  # 种群
        self.it
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值