# uva10820 Send a Table

When participating in programming contests, you sometimes face the
following problem: You know how to calcutale the output for the given
input values, but your algorithm is way too slow to ever pass the time
limit. However hard you try, you just can’t discover the proper
break-off conditions that would bring down the number of iterations to
within acceptable limits. Now if the range of input values is not too
big, there is a way out of this. Let your PC rattle for half an hour
and produce a table of answers for all possible input values, encode
this table into a program, submit it to the judge, et voila: Accepted
in 0.000 seconds! (Some would argue that this is cheating, but
remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided
to apply such a ‘tech- nique’. But however hard he tried, he wasn’t
able to squeeze all his pre-calculated values into a program small
enough to pass the judge. The situation looked hopeless, until he
where calculated from two integers, but whenever the two input values
had a common factor, the answer could be easily derived from the
answer for which the input values were divided by that factor. To put
it in other words: Say Jimmy had to calculate a function Answer ( x;y
) where x and y are both integers in the range [1 ;N ]. When he knows
Answer ( x;y ), he can easily derive Answer ( k  x;k  y ), where k
is any integer from it by applying some simple calculations involving
Answer ( x;y ) and k . For example if N
= 4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer (1 ; 1), Answer (1 ; 2), Answer (2 ;
other 5 can be de- rived from them ( Answer (2 ; 2), Answer (3 ; 3)
; 2), and Answer (4 ; 2) from Answer (2 ; 1)). Note that the function
Answer is not symmetric, so Answer (3 ; 2) can not be derived from
Answer (2 ; 3). Now what we want you to do is: for any values of N
from 1 upto and including 50000, give the number of function Jimmy has
to pre-calculate. Input The input le contains at most 600 lines of
inputs. Each line contains an integer less than 50001 which indicates
the value of N . Input is terminated by a line which contains a zero.
This line should not be processed. Output For each line of input
produce one line of output. This line contains an integer which
indicates how many values Jimmy has to pre-calculate for a certain
value of N .

``````#include<cstdio>
#include<cstring>
const int maxn=50005;
long long phi[50010],ans[50010];
int main()
{
int i,j,k,m,n,p,q,x,y,z;
phi[1]=1;
for (i=2;i<=maxn;i++)
if (!phi[i])
for (j=i;j<=maxn;j+=i)
{
if (!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
for (i=2;i<=maxn;i++)
ans[i]=ans[i-1]+phi[i];
while (scanf("%d",&n)&&n)
printf("%lld\n",ans[n]*2+1);
}``````

• 本文已收录于以下专栏：

## Send a Table uva10820

• deepquiet
• 2016年02月28日 19:09
• 127

## UVa10820 - Send a Table

• a197p
• 2015年05月02日 13:26
• 317

## UVa10820 - Send a Table（phi）

• wu_tongtong
• 2017年10月28日 19:47
• 61

## uva10820 - Send a Table 欧拉函数

Problem A Send a Table Input: Standard Input Output: Standard Output   When participating inpro...
• corncsd
• 2013年11月23日 10:28
• 464

## UVA10820 - Send a Table（欧拉函数）

UVA10820 - Send a Table（欧拉函数） 题目链接 题目大意：给你N，对于1-N里面的每个数x，计算1-N里面与x互质的个数m。最后就将2*m- 1都加起来。因为（x，x...
• u012997373
• 2014年11月09日 16:44
• 347

## 【数论】Send a Table, UVa10820 【线性筛法】【欧拉函数】

#include using namespace std; int n;typedef long long LL; int phi[50005]; void getphi(int m){ phi[1...
• qq_33583069
• 2016年10月11日 11:45
• 195

## UVA10820:Send a Table(交表)

• qq_36778821
• 2017年02月14日 10:06
• 417

## uva10820 - Send a Table(交表)

• shankeliupo
• 2013年05月14日 19:35
• 551

## D - Send a Table

D - Send a Table 题意：求1至n两个互质的数有级对，可交换顺序。题解：用欧拉函数求1至根号n内的，因为求1至n，所以结果*2，又因为1，1不算，所...
• Eric_chen_song_lin
• 2018年02月15日 20:26
• 65

## Send a Table

http://www.bnuoj.com/bnuoj/contest_show.php?cid=2322#problem/25807 // File Name: bo_jwolf10.cpp // ...
• liujie619406439
• 2013年08月29日 22:27
• 533

举报原因： 您举报文章：uva10820 Send a Table 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)