uva10820 Send a Table

原创 2016年08月30日 15:49:05

When participating in programming contests, you sometimes face the
following problem: You know how to calcutale the output for the given
input values, but your algorithm is way too slow to ever pass the time
limit. However hard you try, you just can’t discover the proper
break-off conditions that would bring down the number of iterations to
within acceptable limits. Now if the range of input values is not too
big, there is a way out of this. Let your PC rattle for half an hour
and produce a table of answers for all possible input values, encode
this table into a program, submit it to the judge, et voila: Accepted
in 0.000 seconds! (Some would argue that this is cheating, but
remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided
to apply such a ‘tech- nique’. But however hard he tried, he wasn’t
able to squeeze all his pre-calculated values into a program small
enough to pass the judge. The situation looked hopeless, until he
discovered the following prop- erty regarding the answers: the answers
where calculated from two integers, but whenever the two input values
had a common factor, the answer could be easily derived from the
answer for which the input values were divided by that factor. To put
it in other words: Say Jimmy had to calculate a function Answer ( x;y
) where x and y are both integers in the range [1 ;N ]. When he knows
Answer ( x;y ), he can easily derive Answer ( k  x;k  y ), where k
is any integer from it by applying some simple calculations involving
Answer ( x;y ) and k . For example if N
= 4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer (1 ; 1), Answer (1 ; 2), Answer (2 ;
1), Answer (1 ; 3), Answer (2 ; 3), Answer (3 ; 2), Answer (3 ; 1),
Answer (1 ; 4), Answer (3 ; 4), Answer (4 ; 3) and Answer (4 ; 1). The
other 5 can be de- rived from them ( Answer (2 ; 2), Answer (3 ; 3)
and Answer (4 ; 4) from Answer (1 ; 1), Answer (2 ; 4) from Answer (1
; 2), and Answer (4 ; 2) from Answer (2 ; 1)). Note that the function
Answer is not symmetric, so Answer (3 ; 2) can not be derived from
Answer (2 ; 3). Now what we want you to do is: for any values of N
from 1 upto and including 50000, give the number of function Jimmy has
to pre-calculate. Input The input le contains at most 600 lines of
inputs. Each line contains an integer less than 50001 which indicates
the value of N . Input is terminated by a line which contains a zero.
This line should not be processed. Output For each line of input
produce one line of output. This line contains an integer which
indicates how many values Jimmy has to pre-calculate for a certain
value of N .

首先很容易看出有且只有x,y互质才需要加入答案,所以本质是求互质的数对(x,y)的个数。
不妨设x< y,对于某个y,答案的个数是小于他且与他互质的数,即phi(y)。
所以答案为2*Σphi(2..n)+1
最后的加上的1是(1,1)。

#include<cstdio>
#include<cstring>
const int maxn=50005;
long long phi[50010],ans[50010];
int main()
{
    int i,j,k,m,n,p,q,x,y,z;
    phi[1]=1;
    for (i=2;i<=maxn;i++)
      if (!phi[i])
        for (j=i;j<=maxn;j+=i)
        {
            if (!phi[j]) phi[j]=j;
            phi[j]=phi[j]/i*(i-1);
        }
    for (i=2;i<=maxn;i++)
      ans[i]=ans[i-1]+phi[i];
    while (scanf("%d",&n)&&n)
      printf("%lld\n",ans[n]*2+1);
}
版权声明:本文为博主原创文章,未经博主允许不得转载,欢迎添加友链。 举报

相关文章推荐

uva10820 Send a Table

问题转化+欧拉函数

UVaOJ10820 - Send a Table

Problem A Send a Table Input: Standard Input Output: Standard Output   When participating in pr...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

Send a Table

Problem A Send a Table Input: Standard Input Output: Standard Output   When participating in pr...

UVA 10820 Send a Table

题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&proble...

uva 10820 Send a Table

uva 10820 Send a Table

UVa 10820 Send a Table

欧拉函数

UVA 10820 Send a Table [欧拉函数] [线性筛法]

Send a Table 欧拉函数 线性筛法

UVa 10820 Send a Table (Farey数列&欧拉函数求和)

思路: 1. 答案明显是2|Fn|+1(Fn指Farey数列) 2. 怎么算|Fn|?——由于Farey数列包含了的全部项和与n互质的每个数的相应分数,故有 , 从而 完整代码:

UVA 10820 Send a Table 欧拉函数制phi表 累加sum

题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=19238 题意:统计n中有多少个f(x,y),x,y 思路:其实是一个二元组(x,y)...

[UVA 10820]Send a Table[欧拉函数][nloglog(n)]

题目链接:[UVA 10820]Send a Table[欧拉函数][nloglog(n)] 题意分析: 友人A想要打表过题,每个表内数据都是以数对的形式(x,y)出现,但是呢,表太大了,OJ不让...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)