HDU 1385 Minimum Transport Cost(最短路,打印字典序路径)

链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1385


题目大意:

有N个城市,然后直接给出这些城市之间的邻接矩阵,矩阵中-1代表那两个城市无道路相连,其他值代表路径长度。

如果一辆汽车经过某个城市,必须要交一定的钱(可能是过路费)。

现在要从a城到b城,花费为路径长度之和,再加上除起点与终点外所有城市的过路费之和。

求最小花费,如果有多条路经符合,则输出字典序最小的路径。



分析与总结:

1.   这题的关键在于按照字典序输出路径。

假设有

1--->2  2

2--->3  1

1--->3  3

求1到3的最小花费路径.

那么显然后两条路: 

1-->3   3

1-->2-->3  3

它们的花费是相同的,但是路径的字典序不同,“123”比“13”字典序要小,所以应当输出1-->2-->3.


2.   用一个数组pre记录每一点的上一个结点。按照一般的单源最短路算法,在松弛时是有“小于”就直接松弛, 而这题还要判断“等于”的情况,在“等于”之时,这是要选择哪一个父结点所形成的路径字典序较小,就选择哪一个父结点。

所以,在“等于”之时,可以求出原先的路径, 再求出当前这个的路径,把路径转化成字符串,然后直接比较大小决定是否要换父结点。


3.  求路径的方法并转化为字符串的方法, 其实很简单,用一个3行的递归函数就解决了。



4. 本题学到的新东西:

之后在网上搜题解,发现还可以用Floyd算法来解决,很神奇,再次感叹Floyd算法的强大,自己也只理解了个皮毛。



代码:

1. SPFA 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;

const int INF = 0x7fffffff;
const int VN  = 105;

int n;
int w[VN][VN];
int charge[VN];
int d[VN];
int pre[VN];
bool inq[VN];
int pos=0;

void init(){
    for(int i=0; i<=n; ++i){
        w[i][i] = INF;
        for(int j=i+1; j<=n; ++j)
            w[i][j]=w[j][i]=INF;
    }
}

// 获得从开始点到当前点的路径,转化成字符串
void dfs(int u, char *str){
    if(u==-1)return;
    dfs(pre[u],str);
    str[pos++] = u+'0';
}

bool cmp(int origin, int now){
    char str1[100], str2[100];

    //1. 获取原来的路径
    pos=0;
    dfs(origin,str1);
    str1[pos] = '\0';
    
    //2.获取当前点的路径
    pos=0;
    dfs(now, str2);
    str2[pos++] = origin+'0'; 
    str2[pos]   = '\0';

    //3.比较是否比原来的字典序小
    if(strcmp(str1, str2)==1)return true;
    return false;
}

void SPFA(int src){
    memset(inq, 0, sizeof(inq));
    memset(pre, -1, sizeof(pre));
    int i,j;
    for(i=1; i<=n; ++i) d[i]=INF;
    d[src] = 0;
    queue<int>q;
    q.push(src);
    while(!q.empty()){
        int u = q.front(); q.pop();
        inq[u] = false;
        for(int v=1; v<=n; ++v)if(w[u][v]!=INF){
            int tmp = d[u]+w[u][v]+charge[v];
            if(d[v] > tmp){
                d[v] = tmp;
                pre[v] = u;
                if(!inq[v]){
                    inq[v] = true;
                    q.push(v);
                }
            }
            else if(d[v] == tmp && cmp(v, u)){
                pre[v] = u; 
            }
        } 
    }
}
// 打印路径
void print_path(int u){
    if(pre[u]==-1){
        printf("%d",u);
        return;
    }
    print_path(pre[u]);
    printf("-->%d",u);  
}
int main(){
     
    int i,j,src,des;
    while(scanf("%d",&n),n){
        init();
        for(i=1; i<=n; ++i){
            for(j=1; j<=n; ++j){
                scanf("%d",&w[i][j]);
                if(w[i][j]==-1) w[i][j]=INF;
            }
        }
        for(i=1; i<=n; ++i)
            scanf("%d",&charge[i]);

        while(scanf("%d%d",&src,&des)){
            if(src==-1&&des==-1) break;
            // 备份
            int tmp1=charge[src], tmp2=charge[des];
            charge[src]=0, charge[des]=0; // 起始点和终点Tax收费为0
            SPFA(src);      
            printf("From %d to %d :\n",src,des);
            printf("Path: ");
            print_path(des);
            printf("\nTotal cost : %d\n\n", d[des]);
            // 恢复
            charge[src]=tmp1, charge[des]=tmp2;
        }
        
    }
    return 0;
}


2. Floyd 记录路径

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;

const int INF = 0x7fffffff;
const int VN  = 105;

int n;
int w[VN][VN];
int path[VN][VN];
int charge[VN];

void init(){
    for(int i=0; i<=n; ++i){
        for(int j=0; j<=n; ++j){
            if(i!=j)w[i][j]=INF;
            else w[i][j]=0;
            path[i][j] = j;  // path[i][j]表示点i到j经过的第一个点`
        }
    }
}

void Floyd(){
    for(int k=1; k<=n; ++k)
    for(int i=1; i<=n; ++i)
    for(int j=1; j<=n; ++j)if(w[i][k]!=INF && w[k][j]!=INF){
        int tmp = w[i][k]+w[k][j]+charge[k];
        if(w[i][j] > tmp){
            w[i][j] = tmp;
            path[i][j] = path[i][k];
        }
        else if(w[i][j] == tmp && path[i][j]>path[i][k]){
            path[i][j] = path[i][k];
        }
    }
}   

int main(){
     
    int i,j,src,des;
    while(scanf("%d",&n),n){
        init();
        for(i=1; i<=n; ++i){
            for(j=1; j<=n; ++j){
                scanf("%d",&w[i][j]);
                if(w[i][j]==-1) w[i][j]=INF;
            }
        }
        for(i=1; i<=n; ++i)
            scanf("%d",&charge[i]);

        Floyd();
        while(scanf("%d%d",&src,&des)){
            if(src==-1&&des==-1) break;
            printf("From %d to %d :\n",src,des);
            printf("Path: ");
            int u = src;
            printf("%d",u);
            while(u != des){
                printf("-->%d",path[u][des]);
                u = path[u][des];
            }
            puts("");
            printf("Total cost : %d\n\n", w[src][des]);
        }
        
    }
    return 0;
}



 
 

——  生命的意义,在于赋予它意义。

          
     原创 http://blog.csdn.net/shuangde800 , By   D_Double  (转载请标明)





评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值