关闭
当前搜索:

MobileNets

一篇讲如何设计轻量级网络的文章,来自Google,方法和创新不是很多,但实验太充分。不愧是谷歌,财大气粗,实验随便跑。文章链接: 《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》文章共从三点来探讨网络加速,下面依次介绍这三点以及部分关键性的实验。Depthwise Separabl...
阅读(3743) 评论(3)

什么是P问题、NP问题和NPC问题

本文转自“什么是P问题、NP问题和NPC问题”: http://www.matrix67.com/blog/archives/105, 并做了排版整理。这或许是众多OIer最大的误区之一。你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题...
阅读(708) 评论(0)

Beyond triplet loss—— Re-ID

一篇讲Person Re-ID的论文,来自CVPR2017,同样是改进了Triplet Loss。《Beyond triplet loss: a deep quadruplet network for person re-identification》 减小类内方差 和 增加类间方差...
阅读(2945) 评论(1)

More is Less——卷积网络加速

一篇讲网络加速的论文,来自2017CVPR。《More is Less: A More Complicated Network with Less Inference Complexitv》Introduction 目前做神经网络加速的主要有这几个方面: 低秩分解,定点运算、矢量量化、稀疏表示、特殊的轻量级网络结构。...
阅读(3557) 评论(0)

Re-ID with Triplet Loss

一篇讲Person Re-ID的论文,与人脸识别(认证)有很多相通的地方。 《In Defense of the Triplet Loss for Person Re-Identification》...
阅读(4526) 评论(1)

CNN不能识别Negative图像

一篇挺有意思的短文 《Deep Neural Networks Do Not Recognize Negative Images》。CNN可能还无法像人类一样理解到语义层面,而语义理解很可能是以后人工智能的一个重要层面。...
阅读(1996) 评论(0)

Dilated Convolution

本次介绍一篇有关语义分割的文章,其核心思想是如何不失分辨率的扩大感受野,该方法已被caffe默认支持。 该思想也可以应用到目标检测上来。文章《MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS》github项目链接: https://github.com/fyu/dilationIntroduction...
阅读(9537) 评论(0)

2D图形变换介绍

介绍刚性变换、相似变换、仿射变换、投影变换...
阅读(977) 评论(2)

C++ 类访问控制

最近在使用C++创建类的时候,忽然发现自己对于类访问控制 public,protected,private 的作用没有理解透彻,后来就查了些资料,这里以作记录。访问控制C++类的重要属性就是封装和继承。因此,最关键的问题就是权限 的问题,public,protected,private 控制的就是类内成员的访问权限。...
阅读(552) 评论(0)

C++ 将文件数据一次性加载进内存

问题: 早先写了一个目标检测SDK,里面有从bin文件加载模型和从内存加载模型两个接口。后来遇到了级联检测,即有多个bin模型文件,当想要把多个bin文件合并成一个的时候,发现对应的加载接口也得变。解决: 为了不改变接口,采用了下面的解决思路...
阅读(1004) 评论(0)

Finding Tiny Face

《Finding Tiny Face》小目标检测依然是检测领域的一个难题,原因大概有3个方面:目标本身尺度变化、图像分辨率以及环境因素。虽然很多方法都可以处理多尺度目标检测,但是检测一个3pixel大小的目标和一个500pixel大小的目标还是有本质不同的。...
阅读(5726) 评论(11)

VS运行时库

本文主要讲述VS运行时库: 1 运行时库的主要作用 MTMTdMDMDdMLMLd 已废弃的区别与原理 如何避免这种错误 1 MD和MDd将是潮流所趋 2 在多工程开发时所有的工程使用同一种运行时库 历史发展的角度讲解运行时库 1 从操作系统的角度出发 2 从语言的角度在Windows下进行...
阅读(986) 评论(0)

思考深度学习的泛化能力

神经网络通过记忆学习 传统观点 论文观点 论文实验 神经网络 不 通过记忆学习 参考资料深度神经网络往往带有大量的参数,但依然表现出很强的泛化能力(指训练好的模型在未见过的数据上的表现)。深度神经网络为何会拥有如此强的泛化能力?最近,两篇论文引起了广泛思考。神经网络通过记忆学习《Understanding deep learning requires rethinking generalizatio...
阅读(5288) 评论(0)

排序算法6——堆排序

堆排序简介 二叉堆简介 堆排序 总结堆排序简介堆排序可以看作是简单选择排序的一种的改进方法,平均复杂度为 \(O(n\log n)\),因此应用场合较多。其原理同简单选择排序相似:将数据分为已排序和未排序的两部分,并且不断的从未排序数据中选取最大(或最小)数据加入到已排序集合中。不同之处在于, 堆排序采用了一种特殊的二叉堆结构来快速的寻找最大值。(如下图,首先建立二叉堆,然后进行选择排序)二叉堆简介...
阅读(542) 评论(0)

排序算法5——简单选择排序

简单选择排序的平均复杂度为 \(O(n^2)\), 但效率通常比相同平均复杂度的直接插入排序还要差。但由于选择排序是 内部排序,因此在内存严格受限的情况下还是可以用的。选择排序的原理很简单,如下图所示:持续从未处理元素中找到最小值并加入到已排序列中。...
阅读(471) 评论(0)
144条 共10页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:585827次
    • 积分:6385
    • 等级:
    • 排名:第4409名
    • 原创:132篇
    • 转载:11篇
    • 译文:1篇
    • 评论:515条