排序:
默认
按更新时间
按访问量

排序算法5——简单选择排序

简单选择排序的平均复杂度为 \(O(n^2)\), 但效率通常比相同平均复杂度的直接插入排序还要差。但由于选择排序是 内部排序,因此在内存严格受限的情况下还是可以用的。选择排序的原理很简单,如下图所示:持续从未处理元素中找到最小值并加入到已排序列中。

2017-02-12 23:52:17

阅读数:599

评论数:0

排序算法4——希尔排序

希尔排序原理 希尔排序C实现 希尔排序gap选择策略希尔排序原理希尔排序是对直接插入排序算法的一种改进,二者同属于 插入排序 算法。我在上一节介绍 直接插入排序 的时候,提到过直接插入排序的几个优点,其中有 当数据已经基本有序时,效率较高。希尔排序的改进点可以看作是快速使得数据基本有序。具体如何快...

2017-02-10 11:56:23

阅读数:1085

评论数:0

计算机是如何启动的

一 第一阶段BIOS 1 硬件自检 2 启动顺序 二第二阶段主引导记录 1 主引导记录的结构 2 分区表 三第三阶段硬盘启动 1 情况A卷引导记录 2 情况B扩展分区和逻辑分区 3 情况C启动管理器 四第四阶段操作系统本文转载于: 阮一峰 http://www.ruanyifeng.com/blo...

2017-02-08 22:39:31

阅读数:514

评论数:0

排序算法3——直接插入排序

直接插入排序的平均复杂度是 \(O(n^2)\),因此应用场景较少。直接插入排序的思路是: 每次处理一个数据,将其插入到一个已经排好序的子序列中,直到数据处理完毕。下面给出一个动画示例:未完待续。。。。参考资料:(1)WIKI:https://en.wikipedia.org/wiki/Inse...

2017-02-07 23:50:26

阅读数:561

评论数:0

目标检测——特征金字塔网络

本次继续介绍一篇有关目标检测的论文 《Feature Pyramid Networks for Object Detection》,作者包含Piotr Dollar, Ross Girshick,何凯明等大神,阵容很好很强大。特征金字塔在基于深度学习的多尺度目标检测早有应用......

2017-02-07 17:47:29

阅读数:6566

评论数:2

排序算法2——快速排序

算法原理 算法实现 ——————算法原理——————快速排序算法一种最常见的排序算法,其核心思想就是 分治 ,具体的:(1) 选定一个基准数;(2) 分区,将所有大于基准数的数据分为一区,将所有小于等于基准数的数据分为一区;(3) 递归,对上述分区重复(1)(2),直到每个分区只有一个...

2017-01-19 23:05:15

阅读数:1420

评论数:0

排序算法1——冒泡排序

冒泡排序是一种比较简单的排序算法,效率不高,因此实际当中用到的机会并不多。但作为快速排序算法的基础,还是有必要了解一下。顾名思义,冒泡就是指大的数字(气泡)会优先从底部升到顶端。具体实现的方式就是重复的 交换排序,通过两两比较不断地将大的数字右移。具体看下面的GIF图就很清楚了。冒泡排序在 最坏情...

2017-01-19 22:15:23

阅读数:741

评论数:0

排序算法0——引言

后续会讲解一系列常见的排序算法以及一些特殊要求的排序。作为引言,这里主要强调一下 :了解一个排序算法需要注意哪些方面。

2017-01-18 23:48:18

阅读数:657

评论数:0

caffe层解读系列——slice和concat实现MultiTask

最近一段时间MultiTask网络比较流行,比如做人脸检测的时候,一个网络完成(人脸和非人脸)二分类任务的同时也要进行boudingbox回归或者人脸关键点回归。以人脸检测MTCNN为例,一个网络包含三个任务。训练的时候,一个batch中的图片,一部分用于二分类、一部分用于boundingbox ...

2017-01-15 23:49:33

阅读数:13752

评论数:8

快速多目标检测——YOLO9000

本次介绍一篇有关快速目标检测的文章《YOLO9000: Better, Faster, Stronger》。该方法记作YOLOv2,相比v1除了在性能上有所提升之外,更是在速度上令人惊异。项目主页:http://pjreddie.com/darknet/yolo/ —————————— Intr...

2017-01-04 14:13:52

阅读数:14347

评论数:4

基于知识提取的方法训练一个小网络

Hinton大牛的文章,关于如何得到一个又小又好的网络的。文章链接《Distilling the Knowledge in a Neural Network》 —————————— 背景介绍 —————————— 大家都想要得到一个又好又快的模型,但是实际情况往往是模型越小则性能越差。文献[1]中...

2016-12-23 14:38:42

阅读数:3093

评论数:1

浮点数表示

浮点数表示 浮点数的规格化表示 浮点数的表示范围 浮点数的表示精度 参考资料 之前的一些工作当中碰到了很多有关浮点数的问题,比如浮点数的表达范围、表达精度、浮点数的存储方式、浮点数的强制类型转换等等,因此感觉有必要系统了解一下有关浮点数的问题。 ———————...

2016-12-22 15:00:17

阅读数:9587

评论数:2

caffe层解读系列——Data以及ImageData层用法

直接举一个data层的使用例子:layer { name: "cifar" type: "Data" top: "data" top: "label" include { phase: TR...

2016-11-16 11:44:06

阅读数:8065

评论数:13

模型压缩——将模型复杂度加入loss function

这里介绍2017ICLR OpenReview中的一篇有关网络压缩的文章《Training Compressed Fully-Connected Networks with a Density-Diversity Penalty》。 **看文章标题就知道主要是针对全连接层的,由此我的好感就下降了一...

2016-11-15 14:28:11

阅读数:2400

评论数:0

DeepRebirth——通过融合加速网络

这里介绍2017ICLR OpenReview中的一篇有关网络加速的文章《DeepRebirth: A General Approach for Accelerating Deep Neural Network Execution on Mobile Devices》。 看文章标题觉得高大上,看方...

2016-11-12 12:19:48

阅读数:2987

评论数:0

C++ Map常见用法说明

C++中map提供的是一种键值对容器,里面的数据都是成对出现的,如下图:每一对中的第一个值称之为关键字(key),每个关键字只能在map中出现一次;第二个称之为该关键字的对应值。一. 声明//头文件 #include<map>map<int, string> ID_Name...

2016-11-10 15:07:36

阅读数:60846

评论数:5

深度模型一些新的运行框架或者辅助库工具等

主要记录一些新的深度学习有关的框架工具等,以作个人备份:(1) Android手机上的GPU加速DCNN(运行)库CNNdroid文章《CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional Neural Network...

2016-11-04 14:08:03

阅读数:4143

评论数:0

caffe层解读系列——hinge_loss

—————————— Hinge Loss 定义 ——————————Hinge Loss 主要针对要求”maximum-margin”的分类问题,因此尤其适用于SVM分类。Hinge Loss的定义如下:\(l(y) = max(0,1-t\cdot y)\)其中, \(t=\pm1\) , 需...

2016-11-04 10:55:36

阅读数:3941

评论数:0

1 - 基于卡方检验的特征选择

基于卡方检验的特征选择,更多也可参考http://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.html———————— 原理简介 ———————— 卡方检验(\(\chi...

2016-11-01 10:22:07

阅读数:7794

评论数:0

C++ 宏定义

———————— #define基本用法 ————————#define命令是C语言中的一个宏定义命令,它用来将一个标识符(宏名)定义为一个字符串,该标识符被称为宏名,被定义的字符串称为替换文本。程序编译之前,编译的时候所有的宏名都会被定义的字符串替换,这便是宏替换。理解宏定义的关键在于 “替...

2016-10-19 16:28:04

阅读数:4914

评论数:0

提示
确定要删除当前文章?
取消 删除