《统计学习方法》笔记(十)--SVM(2)

原创 2015年07月07日 08:55:03

线性支持向量机和软间隔最大化

解决有一些特异点造成的数据集线性不可分的问题

将约束条件变为yi*(w*x+b)>=1-z,把z叫做松弛变量是非负的实数;

目标函数也由原先的0.5||w||^2,变为0.5||w||^2+c*sum(zi),c是对误分类的惩罚。

解决这个凸二次规划问题的算法仍然是通过对偶问题的求解来得到原始问题的解

 

合页损失函数:[1-y*(w*x+b)]

通过合页损失的引入将凸二次规划问题等价于最优化问题

MATLAB中有相应的svmtrain ,svmclassify进行处理

相关文章推荐

《统计学习方法》笔记——支持向量机(SVM)

支持向量机概述支持向量机是一种二分类模型,他的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机(感知机利用误分类最小的策略,求得分离超平面,解有无穷多个;线性可分支持向量机利...

《统计学习方法》-支持向量机SVM学习笔记和python源码

支持向量机SVM的学习笔记。对书中关键知识点进行了摘录,并加入一些自己的理解。 -----------------------------------------------------...

统计学习方法svm的实现 c++

  • 2017年08月03日 14:01
  • 4KB
  • 下载

《统计学习方法》笔记(2):感知机

为什么要使用“对偶”?因为对偶形式简化了迭代和计算过程。对比问题5和问题4中的算法推导,“对偶形式”的迭代式更加简明,迭代过程中只需要做简单的加减法即可,而无需像原始形式一样实时计算ηxiyi。...

李航·统计学习方法笔记·第6章 logistic regression与最大熵模型(2)·最大熵模型

李航·统计学习方法笔记·第6章 logistic regression与最大熵模型(2)·最大熵模型标签(空格分隔): 机器学习教程·李航统计学习方法李航统计学习方法笔记第6章 logistic re...

《统计学习方法》笔记08:boosting(2)

上节对AdaBoost算法有了全面梳理。本节讨论提升树模型。1. 提升树模型(Boosting Tree)提升方法 = 加法模型 + 前向分步算法加法模型:基函数的线性组合提升树模型:以决策树(Dec...

SVM程序及文档说明,学习方法综述

  • 2017年04月10日 11:30
  • 6.34MB
  • 下载

统计学习方法读书笔记-概论

李航统计学习概论学习笔记

统计学习方法笔记(三):K近邻法

一、基本概念 k近邻法(k nearest neighbor, k-NN)是一种基本的分类和回归方法,简单、直观。当用来分类时,给定一个训练集,对于新输入实例,找到最近的k个训练样例,然后根据训练样例...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:《统计学习方法》笔记(十)--SVM(2)
举报原因:
原因补充:

(最多只允许输入30个字)