《统计学习方法》笔记(十)--SVM(2)

线性支持向量机和软间隔最大化

解决有一些特异点造成的数据集线性不可分的问题

将约束条件变为yi*(w*x+b)>=1-z,把z叫做松弛变量是非负的实数;

目标函数也由原先的0.5||w||^2,变为0.5||w||^2+c*sum(zi),c是对误分类的惩罚。

解决这个凸二次规划问题的算法仍然是通过对偶问题的求解来得到原始问题的解

 

合页损失函数:[1-y*(w*x+b)]

通过合页损失的引入将凸二次规划问题等价于最优化问题

MATLAB中有相应的svmtrain ,svmclassify进行处理

阅读更多
上一篇《统计学习方法》笔记(九)--SVM(1)
下一篇《统计学习方法》笔记(十一)--SMO
想对作者说点什么? 我来说一句

统计学习方法svm的实现 c++

2017年08月03日 4KB 下载

没有更多推荐了,返回首页

关闭
关闭