关闭

实习点滴(11)--TensorFlow快速计算“多分类问题”的混淆矩阵以及精确率、召回率、F1值、准确率

在机器学习中,我们会利用一些指标(混淆矩阵、精确率、召回率、F1值、准确率)来判断我们模型的好坏,从而改进优化模型。下面介绍如何在TensorFlow下快速计算这些指标。...
阅读(238) 评论(1)

实习点滴(10)--BiLstm+CRF介绍

在序列标注问题中,HMM和CRF是当前比较成熟的技术,但是,随着DL(深度学习)又热起来之后,RNN做序列标注的热潮也开始了。个人而言,HMM和CRF是成熟的技术,但上升空间有限;LSTM的潜力会更大一些。于是乎,开始学习BiLstm+CRF模型了。 顾名思义,这是一个双向LSTM+CRF层的模型双向的LSTM可以得到上下文的信息在输出层后再增加CRF层,加...
阅读(802) 评论(0)

实习点滴(9)--LSTM是如何解决RNN中的“梯度消失”

我们都知道RNN到迭代后期会出现“梯度消失”的问题;         我们也知道LSTM是RNN的变形和改进,它解决了RNN中的“梯度消失”问题;         我们还知道LSTM的各种门(遗忘门、输入门、输出门)。         但是,我们不知道究竟LSTM是如何通过这些门解决“梯度消失”的,反正之前我一直很含糊,现在,我们就一探究竟。...
阅读(310) 评论(0)

条件随机场专题(3)--说起CRF,不得不提的HMM

说起CRF(条件随机场),不得不提起HMM(隐马尔可夫模型),因为HMM和CRF很像。只不过HMM是生成模型,运用的是统计概率;而CRF是判别模型,运用的是生成判别函数,进行迭代求参。...
阅读(86) 评论(0)

实习点滴(8)--收敛优化方法:牛顿法、BFGS算法与L-BFGS算法

在了解CRF推导与参数估计的时候,会用到收敛优化方法去迭代求解凸优化问题,至此,总结一下我对牛顿法、BFGS算法和L-BFGS算法这三种方法的理解。...
阅读(176) 评论(0)

条件随机场专题(2)--CRF模型

CRF是一种典型的判别式模型,它是根据模板,得到相应的特征函数,再通过这些特征函数进行参数的优化计算,那么在介绍CRF模型前,就有必要先介绍判别式模型和生成式模型。...
阅读(196) 评论(0)

条件随机场专题(1)--CRF介绍

CRF(Conditional Random Field) 条件随机场是近几年自然语言处理领域常用的算法之一。...
阅读(156) 评论(0)

实习点滴(7)--《Investigating LSTM for Punctuation Prediction》论文笔记

原文地址:http://lxie.nwpu-aslp.org/papers/2016ISCSLP-XKT.pdf 本文是利用BiLstm(双向Lstm)+CRF模型,对词组间的标点符号进行预测。...
阅读(193) 评论(3)

实习点滴(6)--关于机器学习的一些有用的东西

这本是一篇论文,我在借鉴这篇论文的同时,加上自己在机器学习方面的一些感悟,总结一番。...
阅读(229) 评论(1)

实习点滴(5)--Tensorflow文档学习

学习了一段时间CRF之后,自己也将重点转移到了TensorFlow的学习上,写写博客,就当是做做笔记了。...
阅读(145) 评论(0)

实习点滴(4)--CRF算法的特征模板总结

最近工作中接触到了CRF算法以及CRF++,于是乎,去了解了关于这些的一系列的东西,打算总结总结CRF算法里的模板问题。 我们知道,深度学习(Deeplearning)是不需要特征模板的,它会自己学习里边的规律,而CRF则是需要特征模板的,所以,选择什么样的特征模板是至关重要的。...
阅读(789) 评论(1)

实习点滴(3)--以“词性标注”为例理解CRF算法

看了CRF相关的东西好几天了,现在也过来总结总结。我本人喜欢以讲故事的方式阐述一些东西,纯理论总是很抽象,而且很容易让人失去耐心。那就以“词性标注”为切入点,去理解一下CRF(Conditional Random Field)条件随机场的算法原理(难免有不对或者不全的地方,持续更新)。...
阅读(787) 评论(0)

实习点滴(2)--python统计ip地址出现的个数

今天,在完成任务的时候,用到了统计ip地址出现的个数,现在就做一下总结,写一个统计ip地址的函数...
阅读(185) 评论(0)

实习点滴(1)--Xshell如何运行Python中的某个函数

这是实习的这五天来第一次来到CSDN博客,想写个专题,来记录我的第一份实习所学习到的知识,声明:不涉及到公司的机密,只是记录所学到的技术。         来到公司,自然不仅仅会在自己的PC机上运行程序,还会在公司的服务器上运行,难免会用到Xshell等相关工具,现在说说如何在Xshell工具上运行Python中的某个函数(需要传参的哦)。...
阅读(1312) 评论(0)

自然语言处理基础(4)--数据平滑技术

所谓“数据平滑技术”,是指为了产生更准确的概率来调整最大似然估计的技术,基本思想就是提高低概率(如零概率),降低低概率,尽量使概率分布趋于平均。...
阅读(346) 评论(0)
35条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:13261次
    • 积分:486
    • 等级:
    • 排名:千里之外
    • 原创:34篇
    • 转载:0篇
    • 译文:0篇
    • 评论:10条
    最新评论