原文地址:
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wen_Latent_Factor_Guided_CVPR_2016_paper.pdf
这篇论文中,创新点有三个:1.提出了LIA分析法(Latent Identity Analysis)2.提出了Latent Factor FClayer这一全新的全连接层3.提出了一种两个并行网络训练参数的全新网络。
所做的贡献:
1.提出了一种两个并行网络训练参数的全新网络(LF-CNN)。
2.提出了LIA分析法(Latent Identity Analysis)
3.提出了Latent Factor FClayer这一全新的全连接层
具体细节:
1.LF-CNN 网络模型如下:
根据提供的LF-CNNs模型我们可以知道:
1.使用两部分来训练两个并行的网络,第一部分是用于全连接层参数标注年龄和身份label的数据,第二部分是用于学习卷积层参数的只标注身份label的数据
2.第一部分的卷积层,只进行前向和后向的计算,不进行更新参数。
3.卷计层分为五个Conv Layer,学习卷积层参数的时候,全连接层参数固定,并且最后既使用softmax loss,又使用contrastive loss
4.通过LIA方法对LF-FC layer进行参数更新,代替了传统的梯度下降法
5.第二部分的卷积层参数更新后,会统一给第一部分的卷积更新(而不是像传统卷积通过反向传播进行更新参数)
2.LIA分析法:
由第一部分训练可知:Fconv =f(Fimg),Ffc = g(Fconv);
注:
Eq(3):
Eq(13):
;;
其中,U代表的是所对应的矩阵,它的列向量是不同变化的子空间。
3.LF-FC Layer:
全连接层的等式如下:
我们知道,普通的全连接层是通过Loss函数,使用梯度下降法进行对参数更新的,在这篇论文中,用LIA方法代替了梯度下降法进行对参数的更新(详细见2),正是因为这样,才造就了一种全新的全连接层。