人脸识别方向论文笔记(2)-- Latent Factor Guided Convolutonal Neural Networks for Age-Invariant Face Recognition

        原文地址:

        http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wen_Latent_Factor_Guided_CVPR_2016_paper.pdf

        这篇论文中,创新点有三个:1.提出了LIA分析法(Latent Identity Analysis)2.提出了Latent Factor FClayer这一全新的全连接层3.提出了一种两个并行网络训练参数的全新网络。

       所做的贡献:

        1.提出了一种两个并行网络训练参数的全新网络(LF-CNN)。

        2.提出了LIA分析法(Latent Identity Analysis)

        3.提出了Latent Factor FClayer这一全新的全连接层

      具体细节:

        1.LF-CNN 网络模型如下:

     


         根据提供的LF-CNNs模型我们可以知道:

         1.使用两部分来训练两个并行的网络,第一部分是用于全连接层参数标注年龄和身份label的数据,第二部分是用于学习卷积层参数的只标注身份label的数据

         2.第一部分的卷积层,只进行前向和后向的计算,不进行更新参数。

         3.卷计层分为五个Conv Layer,学习卷积层参数的时候,全连接层参数固定,并且最后既使用softmax loss,又使用contrastive loss

         4.通过LIA方法对LF-FC layer进行参数更新,代替了传统的梯度下降法

         5.第二部分的卷积层参数更新后,会统一给第一部分的卷积更新(而不是像传统卷积通过反向传播进行更新参数)

         2.LIA分析法:

         由第一部分训练可知:Fconv =f(Fimg),Ffc = g(Fconv);

         

         注:

         Eq(3):

         

         Eq(13):

     

         

        其中,U代表的是所对应的矩阵,它的列向量是不同变化的子空间。

        3.LF-FC Layer:

        全连接层的等式如下:

        

         我们知道,普通的全连接层是通过Loss函数,使用梯度下降法进行对参数更新的,在这篇论文中,用LIA方法代替了梯度下降法进行对参数的更新(详细见2),正是因为这样,才造就了一种全新的全连接层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值