关闭

opencv3_java akaze的特征提取与图像匹配 akaze

标签: opencv3java
2831人阅读 评论(10) 收藏 举报
分类:

akaze的特征提取与图像匹配 akaze


package opencv_java_demo;

import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.features2d.*;

public class akaze {

	public static void main(String[] args) {
		try{
			System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
			
			Mat src1=Imgcodecs.imread("./imgaes/src1.jpg");
			Mat src2=Imgcodecs.imread("./imgaes/src2.jpg");
			if(src1.empty()||src2.empty()){
				throw new Exception("no file");
			}
			
			MatOfKeyPoint keypoint1=new MatOfKeyPoint();
			MatOfKeyPoint keypoint2=new MatOfKeyPoint();
			FeatureDetector sifDetector =FeatureDetector.create(FeatureDetector.AKAZE);
			
			siftDetector.detect(src1,keypoint1);
			siftDetector.detect(src2,keypoint2);
			
			DescriptorExtractor extractor=DescriptorExtractor.create(DescriptorExtractor.AKAZE);
			
			Mat descriptor1=new Mat(src1.rows(),src1.cols(),src1.type());
			extractor.compute(src1, keypoint1, descriptor1);
			Mat descriptor2=new Mat(src2.rows(),src2.cols(),src2.type());
			extractor.compute(src2, keypoint2, descriptor2);
			
			MatfOfMatch matches=new MatOfMatch();
			DescriptorExtractor matcher=DescriptorExtractor.create(DescriptorExtractor.BRUTEFORCE);
			
			matcher.match(descriptor1,descriptor2,matches);
			
			Mat dst=new Mat();
			Features2d.drawMatches(src1, keypoint1, src2, keypoint2, matches, dst);
			
			Imgcodecs.imwrite("./images/akaze.jpg", dst);
		}catch(Exception e){
			System.out.println("例外:"+e);
		}

	}

}


1
1
查看评论

Java实现两个图的匹配率计算

Java实现两个图的匹配率计算 用java实现以下功能。 两个图A和B之间的匹配率计算公式: ,其中|A|表示图A中顶点个数,表示图A和图B共同顶点 组成的子图。例如下图中R1和P1的匹配率为:(4*4)/(4*5)= 0.8. 给定两组子图R, P, 例如,如下图R = {R1, R...
  • keseliugeizuori
  • keseliugeizuori
  • 2016-10-27 11:52
  • 1220

Java图像处理方面的工具库和开发包

Java图像处理类库Java Image Filters Java Image Filters 是由 Jhlabs 开发的一组用来处理 Java 图像的类库,提供各种常用的图像处理效果,例如反转色、扭曲、水波纹、凹凸、黑白效果等等数十种效果,如下图所示,更多的效果请看其网站首...
  • zlxtk
  • zlxtk
  • 2017-02-06 10:59
  • 4646

自己琢磨的 图像相似度算法 JAVA版实现

最近有个项目里要整理缩略图和原图是否匹配,然后就去找工具和方法做了,之后很好奇图像相似度是怎么算的,google了下貌似很深奥,而且无最简单的例子java代码源码下载,估计图形学的人不削用java吧。         &...
  • wty19
  • wty19
  • 2011-09-25 22:04
  • 10154

新手从零开始,相似图像匹配SIFT算法(三),完结版

时隔半个月,终于可以提笔写这篇从零开始学sift算法的博文了! 本文适合对理论有一定了解了的童鞋,帮你搞定java代码实现。如果不清楚理论,可以结合这篇博文来一起看 http://blog.csdn.net/zddblog/article/details/7521424 经过再三折腾,...
  • abcd_d_
  • abcd_d_
  • 2014-03-27 15:42
  • 5342

图像比较之模板匹配

图像比较之模板匹配 1.模板匹配基本原理概述       当我们比较两幅图像的时候,首先面对的基本问题是:什么时候两幅图像才是一样或比较相似的,这两幅图像的相似程度如何衡量?当然,比较一般的方法是,当两幅图像的所有像素灰度值一样的时候,我们认为这...
  • lz0499
  • lz0499
  • 2017-04-05 22:24
  • 2192

简单图像匹配

在基于图像内容检索的应用中,图像的匹配一直是众多计算机科学家研究的课题,本篇文章目的在于给有兴趣研究的人员提供一个大概的框架,没有半点的技术性的创新。1 图像匹配的问题所谓图像匹配,就是指图像之间的比较、得到不同图像之间的相似度。而两个东西要进行比较,首先必须清除要比较什么东西,即图像特征。图像特征...
  • guanchanghui
  • guanchanghui
  • 2006-09-01 10:50
  • 11286

图像配准与匹配的区别

原出处:http://blog.csdn.net/angelazy/article/details/31733143 匹配,是寻找与一幅图相似的图像(不对寻找到的图像做矫正)。 配准,是寻找相似图像但是变形后的图像(需要做一些旋转之类的校正变换)。 融合,是多幅图像连接成一幅大图,视频集成...
  • shenshen211
  • shenshen211
  • 2016-06-01 10:51
  • 2443

sift是图像匹配的非常经典的算法

sift是图像匹配的非常经典的算法,但是很复杂,要想自己拿C或C++实现很麻烦,如果只是使用的话,有国外某高人维护的sift库,前期只要自己能够调用即可,关键是要熟悉大致的流程,对sift库有个了解,具体的工作只要调用其中的函数即可。匹配效果: sift是图像匹配的非常经典的算法,但是很复...
  • chen825919148
  • chen825919148
  • 2012-06-23 13:17
  • 45568

新手从零开始学,相似图像匹配SIFT算法(一)

开始学习SIFT算法已经有半个月了,总算弄懂它是怎么回事了! 1、这次项目是做相似图片搜索,项目需求大致确定后;就在百度里乱搜一通,搜图像匹配或图像识别之类的关键词,可以搜出一大堆东西,什么google图像匹配原理啊,什么颜色直方图啊,什么数学形态学,数字图像处理等等,当时一下子觉得很欣慰——毕竟有...
  • abcd_d_
  • abcd_d_
  • 2014-03-09 21:39
  • 5244

图像匹配---(Python)

图像匹配---(Python) 图像匹配分为以灰度为基础的匹配和以特征为基础的匹配: (1)灰度匹配是基于像素的匹配。灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。 (2)特征匹配则是基于区域的匹配。基于特...
  • liyuqian199695
  • liyuqian199695
  • 2016-12-26 19:52
  • 2533
    个人资料
    • 访问:135722次
    • 积分:2295
    • 等级:
    • 排名:第19260名
    • 原创:90篇
    • 转载:0篇
    • 译文:4篇
    • 评论:135条
    联系方式
    QQ联系方式
    作者日本硕士
    知识长期输入中
    技术长期磨练中
    如有问题或交流
    请QQ联系 649508982
    来者请说明CSDN
    或者加入机器学习交流群
    不定期发送pdf等学习资源
    QQ群号:657119450
    机器学习 QQ群加入
    博客专栏
    最新评论