poj1273【最大流入门】

原创 2016年05月31日 21:07:24

Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 67890   Accepted: 26235

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

题意:

有n个池塘(从1到n开始编号,1为源点,n为汇点),m条水渠,给出这m条水渠端点和所能流过的最大流量,

求从源点到汇点能流过的最大流量。(1->n);



超级水的最大流问题

Dinic算法

当成模板啦~


#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <queue>

#define maxn 105
#define INF 0x3f3f3f3f
using namespace std;

struct Edge{
	int from,to,cap,flow;
};

struct Dinic {
	int n,m,s,t;
	vector<Edge> edges;
	vector<int> G[maxn];		//邻接表 
	bool vis[maxn];				//BFS使用 
	int d[maxn];				//从起点到i的距离 
	int cur[maxn];				//当前弧下标 
	
	void init(int n){
		this->n=n;
		for(int i=1;i<=n;i++) 	G[i].clear();
		edges.clear();
	}
	
	void AddEdge(int from, int to, int cap){
		edges.push_back( (Edge){from,to,cap,0} );
		edges.push_back( (Edge){from,to,cap,0} );
		m=edges.size();
		G[from].push_back(m-2);
		G[to].push_back(m-1);
	}
	
	bool BFS(){
		memset(vis,0,sizeof(vis));
		queue<int> Q;
		Q.push(s);
		d[s]=0;
		vis[s]=1;
		while(!Q.empty()){
			int x=Q.front();	Q.pop();
			for(int i=0;i<G[x].size();i++){
				Edge &e= edges[G[x][i]];
				if(!vis[e.to]&&e.cap>e.flow){	//只考虑残量网络中的图 
					vis[e.to]=1;
					d[e.to]=d[x]+1;
					Q.push(e.to); 
				}
			}
		}
		return vis[t];
	} 
	int DFS(int x,int a){
		if(x==t||a==0)	return a;
		int flow=0,f;
		for(int &i = cur[x];i<G[x].size();i++){
			Edge &e =edges[G[x][i]];
			if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow))>0)){
				e.flow+=f;
				edges[G[x][i]^1].flow-=f;
				flow+=f;
				a-=f;
				if(a==0)	break;
			}
		}
		return flow;
	} 
	
	int Maxflow(int s,int t){
		this->s=s;
		this->t=t;
		int flow=0;
		while(BFS()){
			memset(cur,0,sizeof(cur));
			flow+=DFS(s,INF);
		}
		return flow;
	}


	vector<int> Mincut(){		//最小割割边 
		BFS();
		vector<int> v;
		for(int i=0;i<edges.size();i++){
			Edge &e=edges[i];
			if(vis[e.from] && !vis[e.to] && e.cap>0)	
				v.push_back(i);
		} 
		return v;
	}
};


Dinic solver;
int main(){
	int n,m;
	while(scanf("%d%d",&m,&n)!=EOF){	//边,点 
		solver.init(n);
		int x,y,z;
		for(int i=0;i<m;i++){
			scanf("%d%d%d",&x,&y,&z);
			solver.AddEdge(x,y,z);
		} 
		int ans=solver.Maxflow(1,n);
		printf("%d\n",ans);
	} 
	
	
	return 0;
} 









版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ1273(最大流入门)

#include #include #include #include #include #include using namespace std; vector V[205]; int...
  • immiao
  • immiao
  • 2015年01月16日 12:44
  • 291

【网络流之最大流】POJ1273-Drainage Ditche【模板题】

题目链接:http://poj.org/problem?id=1273 这是一道网络流的入门题,用来理解最大流很好。 这个题目我是看的bin神专门为我们这些歌渣渣写的最大流入门博客学的;可以去膜拜一下...
  • wlxsq
  • wlxsq
  • 2015年08月29日 11:21
  • 1487

poj1273——最大流

#include#include#define max 205int g[max][max];int f[max][max];int n,e;int used[max];int pre[max];in...
  • k1246195917
  • k1246195917
  • 2010年08月17日 20:17
  • 289

POJ1273(最大流)

#include//Edmonds-karp #include using namespace std; int INF; int main() {     memset(&INF,127...
  • paul08colin
  • paul08colin
  • 2011年01月04日 10:22
  • 294

最大流--poj1273

裸的最大流,没什么好说的,第一次做,总结一下这次犯的错误。 首先queue开在了全局变量,然后就是没考虑重边,应该说还没接触过重边,以后要注意,据说写重边应该是没错,所以以后就写上,f[i][j]+...
  • u010660276
  • u010660276
  • 2013年08月12日 15:13
  • 394

poj1273 Drainage Ditches(最大流入门)

思路:又是一道模板题 #include #include #include #include #include #include #include #include #inc...
  • qq_21057881
  • qq_21057881
  • 2016年02月06日 14:16
  • 177

poj1273(最大流)

Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clove...
  • martinue
  • martinue
  • 2015年08月23日 12:21
  • 379

poj1273 最大流

用的是EdmondsKarp 程序可以再优化的,懒得优化了 EdmondsKarp #include #include #include #include #include u...
  • sunmenggmail
  • sunmenggmail
  • 2012年03月25日 11:25
  • 380

poj1273 (最大流)

#include #include #include #include using namespace std ; const int maxn = 222 ; const int INF = 21...
  • No__stop
  • No__stop
  • 2014年05月14日 16:38
  • 548

最大流poj1273

// BFS 的 Edmonds_Karp #include #include using namespace std; const int N = 210;//顶点最多个数 ...
  • liang5630
  • liang5630
  • 2012年08月12日 16:30
  • 655
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj1273【最大流入门】
举报原因:
原因补充:

(最多只允许输入30个字)