# poj1273【最大流入门】

Drainage Ditches
 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67890 Accepted: 26235

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10


Sample Output

50

Dinic算法

#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <queue>

#define maxn 105
#define INF 0x3f3f3f3f
using namespace std;

struct Edge{
int from,to,cap,flow;
};

struct Dinic {
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];		//邻接表
bool vis[maxn];				//BFS使用
int d[maxn];				//从起点到i的距离
int cur[maxn];				//当前弧下标

void init(int n){
this->n=n;
for(int i=1;i<=n;i++) 	G[i].clear();
edges.clear();
}

void AddEdge(int from, int to, int cap){
edges.push_back( (Edge){from,to,cap,0} );
edges.push_back( (Edge){from,to,cap,0} );
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}

bool BFS(){
memset(vis,0,sizeof(vis));
queue<int> Q;
Q.push(s);
d[s]=0;
vis[s]=1;
while(!Q.empty()){
int x=Q.front();	Q.pop();
for(int i=0;i<G[x].size();i++){
Edge &e= edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow){	//只考虑残量网络中的图
vis[e.to]=1;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){
if(x==t||a==0)	return a;
int flow=0,f;
for(int &i = cur[x];i<G[x].size();i++){
Edge &e =edges[G[x][i]];
if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow))>0)){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)	break;
}
}
return flow;
}

int Maxflow(int s,int t){
this->s=s;
this->t=t;
int flow=0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow+=DFS(s,INF);
}
return flow;
}

vector<int> Mincut(){		//最小割割边
BFS();
vector<int> v;
for(int i=0;i<edges.size();i++){
Edge &e=edges[i];
if(vis[e.from] && !vis[e.to] && e.cap>0)
v.push_back(i);
}
return v;
}
};

Dinic solver;
int main(){
int n,m;
while(scanf("%d%d",&m,&n)!=EOF){	//边，点
solver.init(n);
int x,y,z;
for(int i=0;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
}
int ans=solver.Maxflow(1,n);
printf("%d\n",ans);
}

return 0;
} 

• 本文已收录于以下专栏：

## POJ 1273 最大流入门题 Edmonds_Karp算法

Edmonds_Karp算法步骤： 循环{ 初始化 寻找增广路 没有则退出 根据增广路，更新flow } #include #include #include #inc...

## poj 1273 Drainage Ditches 网络流最大流入门 ford-fulkerson

Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 70072 ...

## POJ 1273 Drainage Ditches(最大流入门)

POJ 1273 Drainage Ditches(最大流入门) http://poj.org/problem?id=1273 题意:        现在有m个池塘(从1到m开始编号,1为源点,...

## 最大流入门 之 poj 1273

//  [5/7/2014 Sjm] /* 图论之最大流： Ford-Fulkerson方法 dfs 实现 第一次接触网络流的题目，卡了好久。。。最后终于理解了代码，自己能敲出来了。。。 教训： (体...

## POJ - 1273 Drainage Ditches （网络流入门题）

举报原因： 您举报文章：深度学习：神经网络中的前向传播和反向传播算法推导 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)