Hightway Networks学习笔记

本文是关于Highway Networks的学习笔记,介绍了其作为解决深层神经网络训练难题的结构,如何构筑,以及训练深层Highway Networks的优化方法,并与Fitnet进行了对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

神经网络的深度是成功与否的重要因素,理论上来说,深层网络的表现要比浅层的好得多。然而,当深度的不断加深,训练也变得更加困难。

文章提出了一种新颖的结构,可以对任意深度的网络进行优化。这是通过一种控制穿过神经网络的信息流的闸门机制所实现的。通过这种机制,神经网络可以提供通路,让信息穿过后却没有损失。我们将这种通路称为information highways。

Highway Networks

朴素卷积神经网络由L个层构成,用H将输入x,转换为输出y,忽略下标和截距

这里写图片描述

对于highway network,添加了两个非线性转换

这里写图片描述

式中,前一项表示输入信息被转换的部分,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值