本章概要
本章从如何挑选西瓜的经验出发,介绍了本书所涉及基本术语和概念。
数据集、样本、特征(属性)、特征空间(属性空间、样本空间、输入空间)、特征向量、维数;
学习(训练)、训练数据、训练样本、假设、预测、标记、样例、标记空间(输出空间)、测试、测试样本;
分类、回归、聚类、簇、监督、无监督、泛化能力;
归纳、演绎、概念学习、假设空间、版本空间;
归纳偏好(偏好)、奥卡姆剃刀;
同时简要介绍了机器学习的发展史。
符号主义、连接主义、机器学习、数据挖掘、统计学;
习题解答
1.1 版本空间
当前的特征维度为3(色泽、根蒂、敲声),共3、2、2种取值,1,4的特征完全不同。
根据版本空间的定义(版本空间指的是与训练集一致的假设空间),由表可知,1ÿ