周志华《机器学习》课后习题解答系列(四):Ch3.5 - 编程实现线性判别分析

本文介绍了如何使用Python的sklearn库和自编程实现线性判别分析(LDA),以解决西瓜数据集的分类问题。通过比较sklearn的LDA模型和自编代码,探讨了LDA在线性不可分数据上的局限性,并展示了删除离群点后LDA的改进效果。
摘要由CSDN通过智能技术生成

本系列主要采用Python-sklearn实现,环境搭建可参考 数据挖掘入门:Python开发环境搭建(eclipse-pydev模式).

相关答案和源代码托管在我的Github上:PnYuan/Machine-Learning_ZhouZhihua.

3.5 编程实现线性判别分析(LDA)

这里写图片描述

本题采用题3.3中的西瓜数据集如下图示:

这里写图片描述

这里采用基于sklearn自己编程实现两种方式实现线性判别分析(查看完整代码)。

关于数据集的介绍:

具体过程如下:

1. 数据导入、可视化、预分析:

可以参照周志华《机器学习》课后习题解答系列(四):Ch3.3 - 编程实现对率回归中的第一步。

2. 采用sklean得到线性判别分析模型:

采用sklearn.discriminant_analysis.LinearDiscriminantAnalysis直接实现基础的LDA,通过分割数据集,在训练集上训练数据,在预测集上度量模型优劣。

给出样例代码如下:

from sklearn import model_selection
from
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值