TensorFlow学习笔记之五——源码分析之最近算法

import numpy as np
import tensorflow as tf

# Import MINST data
import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
#这里主要是导入数据,数据通过input_data.py已经下载到/tmp/data/目录之下了,这里下载数据的时候,需要提前用浏览器尝试是否可以打开
#http://yann.lecun.com/exdb/mnist/,如果打不开,下载数据阶段会报错。而且一旦数据下载中断,需要将之前下载的未完成的数据清空,重新
#进行下载,否则会出现CRC Check错误。read_data_sets是input_data.py里面的一个函数,主要是将数据解压之后,放到对应的位置。
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
#mnist.train.next_batch,其中train和next_batch都是在input_data.py里定义好的数据项和函数。此处主要是取得一定数量的数据。

# Reshape images to 1D
Xtr = np.reshape(Xtr, newshape=(-1, 28*28))
Xte = np.reshape(Xte, newshape=(-1, 28*28))
#将二维的图像数据一维化,利于后面的相加操作。
# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
#设立两个空的类型,并没有给具体的数据。这也是为了基于这两个类型,去实现部分的graph。

# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.neg(xte))), reduction_indices=1)
# Predict: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
#最近邻居算法,算最近的距离的邻居,并且获取该邻居的下标,这里只是基于空的类型,实现的graph,并未进行真实的计算。
accuracy = 0.
# Initializing the variables
init = tf.initialize_all_variables()
#初始化所有的变量和未分配数值的占位符,这个过程是所有程序中必须做的,否则可能会读出随机数值。
# Launch the graph
with tf.Session() as sess:
    sess.run(init)

    # loop over test data
    for i in range(len(Xte)):
        # Get nearest neighbor
        nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i,:]})
        # Get nearest neighbor class label and compare it to its true label
        print "Test", i, "Prediction:", np.argmax(Ytr[nn_index]), "True Class:", np.argmax(Yte[i])
        # Calculate accuracy
        if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
            accuracy += 1./len(Xte)
    print "Done!"
    print "Accuracy:", accuracy
#for循环迭代计算每一个测试数据的预测值,并且和真正的值进行对比,并计算精确度。该算法比较经典的是不需要提前训练,直接在测试阶段进行识别。



源代码地址:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2%20-%20Basic%20Classifiers/nearest_neighbor.py


相关API:

tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None)

Computes the sum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices. Unless keep_dims is true, the rank of the tensor is reduced by 1 for each entry in reduction_indices. If keep_dims is true, the reduced dimensions are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a tensor with a single element is returned.

For example:

# 'x' is [[1, 1, 1]
#         [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6
Args:
  • input_tensor: The tensor to reduce. Should have numeric type.
  • reduction_indices: The dimensions to reduce. If None (the default), reduces all dimensions.
  • keep_dims: If true, retains reduced dimensions with length 1.
  • name: A name for the operation (optional).
Returns:

The reduced tensor.

点评:这个API主要是降维使用,在这个例子中,将测试图片和所有图片相加后的二维矩阵,降为每个图片只有一个最终结果的一维矩阵。


评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值