- 博客(65)
- 资源 (5)
- 收藏
- 关注
原创 2026 Agent Skills 深度实战:从技能封装到规模化落地的全链路解决方案(附 3 大行业案例 + 框架实测 + 代码示例)
智能体技能封装:模块化革命推动产业落地新范式 本文基于100+企业案例和开发者实践,揭示了智能体落地的核心痛点——80%项目受限于技能复用率和成本控制。文章提出AgentSkills三层封装架构(元数据层、指令层、资源层),通过模块化设计实现技能复用率提升至80%、成本降低70-90%、团队协作效率提升60%。三个行业案例显示,该方案使新人效率提升300%、故障排查时间缩短50%。框架选型对比为开发者提供决策参考,并附Python实现代码。
2026-02-05 16:56:02
1224
1
原创 2026 智能体深度解析:落地真相、红利赛道与实操全指南(调研 100 + 案例干货)
本文基于 12 个行业、100 + 真实落地案例的深度调研,拆解 2026 年智能体从 “概念” 到 “盈利” 的核心逻辑。聚焦多智能体联动、轻量化模型、UCP/A2A 协议标准化三大技术突破,精选制造业、跨境电商、医疗等 6 大行业的 10 个带数据案例,附 5 套可直接复用的流程图和 3 张实测对比表。同时为职场人、开发者、中小企业主梳理了低门槛红利赛道(垂直技能包、部署服务、机器人配套),总结 37 个失败案例的避坑指南,并预测 2026-2027 年 “数字分身普及、智能体集群标配、国产化生态崛起”
2026-02-05 14:48:14
731
原创 五维讲解 + 星级难度!275 题吃透大模型面试 90% 考点
《大模型面试突击上岸课》针对大厂技术面试评分标准设计,采用"五维讲解模式+星级难度划分"体系。课程包含275道真题,覆盖12大核心模块,每道题按考点定位、原理拆解、答题框架、避坑纠错和追问延伸五个维度拆解。题目按1-5星分级,适配不同经验求职者。前50名学员可获赠《275题星级五维答题手册》,课程支持永久回看并持续更新。通过系统化训练,帮助候选人全面提升面试表现,精准把握得分要点。
2026-02-01 21:16:15
340
原创 2026-2027 大模型面试关键:275 道星级真题 + 工业界实操细节
大模型算法岗面试趋势显示,2026年大厂更注重实操能力而非死记硬背。面试问题深度聚焦RLHF对齐税优化、RAG的HyDE逻辑等实战细节。《大模型面试突击上岸课》提供275道星级真题,涵盖12大模块从基础到前沿的知识体系,结合工业级项目经验讲解RLHF稳定性、Self-RAG设计等核心问题。课程包含30节精讲视频和星级五维手册,前50名赠送价值299元的真题解析资料,持续更新2026年新题,帮助候选人系统提升面试竞争力。
2026-02-01 21:12:33
261
原创 275 道大厂真题 + 五维讲解!大模型面试高效突击
《大模型面试突击上岸课》针对2026-2027年大模型岗位竞争,提供275道大厂高频真题,覆盖Transformer、微调、RAG等12大模块。课程突出工业界实操细节,如LoRA参数设置、vLLM显存计算等核心考点,并采用"五维讲解模式"系统拆解答题逻辑。前50名学员可获赠《275题分模块五维解析手册》,包含完整解题框架。30节精讲课程永久回看,持续更新大厂真题,帮助求职者精准把握面试要点,避免题海战术。
2026-02-01 21:05:25
300
原创 无经验转行大模型?我靠汽车底盘运维大模型拿 3 家 offer,8 卡 A100 微调 + VLLM 部署全拆
【企业级AI运维实战:汽车零部件厂智能系统全解析】 本文详细拆解了一个汽车底盘零部件厂的设备运维AI系统落地案例,涵盖从数据处理到部署的全流程技术细节: 真实痛点解决: 结构化处理1200条维修工单,将故障排查时间缩短40% 针对专业术语理解问题(准确率仅58%),采用LLaMA3-8B+QLoRA微调方案 建立知识库降低40%重复排查率 核心技术栈: 数据处理:Pandas清洗+正则表达式结构化 模型训练:8卡A100 QLoRA微调(显存优化90%) RAG优化:Chroma+FAQ前置过滤(延迟降低8
2026-01-02 21:05:25
1069
原创 无经验转行大模型?车载多模态项目全拆解(vLLM+QLoRA + 代码可跑),3 人靠它拿 offer
本文分享了一个车载多模态大模型项目的实战经验,重点解决零经验开发者如何通过具体项目进入大模型领域。文章详细拆解了从模型选型(Qwen2.5-VL-32B)、多模态融合(含语音降噪、手势识别等核心代码)、QLoRA微调(4卡A100优化车载术语识别)到vLLM边缘部署(Jetson AGX Orin量化优化)的全流程。特别针对车载场景的特殊需求(如低延迟、容错处理)提供了可复用的解决方案,并总结了数据清洗、术语区分等关键踩坑经验。该项目已帮助多位零经验开发者获得自动驾驶公司offer,强调企业更看重落地细节而
2026-01-02 19:36:22
479
原创 无经验转行大模型?我靠 1 个行业落地项目拿 3 家 offer,QLoRA+vLLM 细节全拆
本文分享零经验转行大模型的实战方法,通过定制"行业私有知识库+智能路径规划"项目,帮助求职者2周内获得3家AI公司面试机会。项目包含三大核心技术:1)知识图谱三层关联与动态权重设计;2)QLoRA微调的参数优化与问题解决;3)vLLM部署的高并发优化方案。文章强调企业更看重解决实际问题的能力而非工具使用,并提供面试应答话术模板。最后指出项目具有行业适配性,可快速调整应用于金融、医疗等不同领域,建议零经验者聚焦落地项目而非通用Demo。
2026-01-02 19:13:44
567
原创 转行AI必看!3个月打造大模型私有知识库项目,面试狂拿3个offer(附QLoRA微调+Milvus部署全流程)
转行AI时缺乏真实项目经验是致命短板。本文通过一个家电售后技术支持系统案例,展示了如何打造符合企业需求的大模型项目:1)业务价值方面,维修查询时间从15分钟降至2分钟,客户流失率降低76%;2)技术选型上,基于业务需求选择Qwen2.5-14B、Milvus、LangChain等技术栈,并详细说明决策依据;3)提供面试应答模板,强调"技术解决业务问题+数据支撑价值"的表达逻辑。文章还分享了QLoRA微调、分集合存储等核心代码片段及踩坑经验,帮助求职者打造有竞争力的项目作品。
2026-01-02 13:12:19
759
原创 无经验转行大模型?我靠1个行业落地项目拿3家offer,QLoRA+vLLM细节全拆
前阵子帮一个同学做大模型求职,他的情况太典型了——学了大半年大模型,从LangChain到Milvus全跟着教程跑过,但手里只有一个“通用知识库Demo”,简历写“熟悉大模型微调与部署”,投了40家公司,连1个面试都没拿到。后来加了任务队列和锁机制,高优先级任务先执行,低优先级排队,这个问题就解决了。整个适配过程只花了5天,不用重构核心架构,零经验同学也能快速上手,面试时可以说“我做的项目能快速适配不同行业,当时从企业服务改成金融方向,只调整了数据和部分规则,核心技术架构不用动”,体现项目的扩展性。
2026-01-02 12:06:22
563
原创 无大模型项目拿不到面试?我帮多个转行同学定制车载多模态项目,面试问答全设计好
本文纯实战分享:应届生/转行做大模型,最缺的不是技术知识,是“能落地、能说清、面试官爱问”的项目——我用「车载多模态认知智能交互系统」帮3个零项目经验的同学定制化包装,从模型架构到微调踩坑,从技术难点到面试话术全打通,现在他们都拿到了AI公司的面试邀约,甚至有人过了字节二面。很多人以为定制项目就是“给个代码包”,错了!不用怕没经验,我们帮你把“零基础”包装成“有潜力”,把“模糊的项目”变成“面试加分项”,帮你少走弯路,高效拿到意向offer~二、我们帮你做的,不只是“一个项目”,是“能应对面试的全套方案”
2026-01-01 22:20:21
697
原创 图像处理-最常见面试题(必问)
文章目录1.图像预处理有哪些方法?1.1 高斯滤波器原理介绍?2.图像增强有哪些方法?3.图像的特征提取有哪些算法?3.1 HOG(方向梯度直方图)3.2 SIFT(尺度不变特征变换)3.3 SURF(加速稳健特征,对sift的改进)3.4 DOG(高斯函数差分)3.5 LBP(局部二值模式)3.6 HAAR3.7 SIFT vs HOG4.膨胀和腐蚀含义?开运算和闭运算先后顺序?5.传统的边缘检测算子有哪些?5.1 索贝尔算子(Sobel)5.2 加权平均算子(Isotropic Sobel)5.3 罗伯
2021-03-02 18:02:00
12579
原创 深度学习-第二章 卷积神经网络面试题(大厂必问,历经半年整理)
文章目录1.[神经网络](%28https://blog.csdn.net/cc13186851239/article/details/113983560%29)2.CNN2.1卷积神经网络的结构2.2 Keras搭建CNN2.2经典网络分类2.2.1 LeNet2.2.2 AlexNet2.2.2.1 AlexNet 对比LeNet 的优势?2.2.3 VGG2.2.3.1 VGG使用2个3*3卷积的优势在哪里?2.2.3.2 每层卷积是否只能用一种尺寸的卷积核?2.2.4 Inception(GoogL
2021-02-24 19:21:19
8204
1
原创 深度学习-第一章 神经网络面试题(大厂必问,历经半年整理)
文章目录1.神经网络1.1各个激活函数的优缺点?1.2 为什么ReLU常用于神经网络的激活函数?1.3 梯度消失和梯度爆炸的解决方案?梯度爆炸引发的问题?1.4如何确定是否出现梯度爆炸?1.5神经网络中有哪些正则化技术?1.6 批量归一化(BN) 如何实现?作用?1.6.1 BN为什么防止过拟合?1.7谈谈对权值共享的理解?1.8 对fine-tuning(微调模型)的理解?为什么要修改最后几层神经网络权值?1.9 什么是Dropout?原理?为什么有用?它是如何工作的?1.10如何选择dropout 的概
2021-02-23 13:28:58
7952
原创 告别“复读机“AI:用Agent Skills打造你的专属编程副驾
本文探讨了AI编程助手的局限性及解决方案。当前AI工具存在三大痛点:1)需要反复调整需求细节;2)无法及时更新团队规范;3)跨平台配置割裂。2026年兴起的Agent Skills技术通过分层架构解决这些问题:Rules层定义基本行为约束,Skills层封装专业工作流程,MCP层连接外部工具。文章详细演示了如何构建SpringBoot API开发助手Skill,包括目录结构设计、核心SKILL.md编写、辅助脚本开发等。同时提出了团队落地建议,如共享Skills仓库、版本管理策略等。
2026-02-12 11:27:41
595
原创 从“码农“到“AI指挥家“:2026年程序员生存指南
2026年AI编程工具完成质变:Kimi K2.5代码修复率达76.8%,Cursor让初级开发者3天上手原本需2周的项目。程序员核心竞争力正从"手写代码"转向"指挥AI团队"——包括复杂系统设计、AI代码审计、人机协作流程设计三支柱。实测显示,不同工具有明确边界:Kimi中文理解最强但安全意识弱,Claude架构最严谨但成本极高,通义灵码最合规适合金融场景。转型需三个月实战:首月精通工具建立提示词库,次月设计团队AI协作SOP,三月定位AI架构师/安全专家/业务翻译官。
2026-02-09 11:11:01
751
原创 工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
本文聚焦工业大模型工程化部署的核心挑战,提出了一套完整的解决方案。针对工业场景特有的资源抢占、负载波动、高稳定性要求等痛点,设计了五层分布式架构,整合VLLM推理服务和Milvus向量数据库,并实现动态资源调度与全链路监控。通过量化技术、动态批处理和冷热缓存优化显存使用,采用ARIMA模型预测负载波动,确保P0紧急请求优先处理。文章详细提供了部署脚本、配置文件和实测数据,解决了GPU抢占、高峰延迟等关键问题,最终实现99.9%的可用性和≤220ms的响应延迟,为工业场景提供了稳定可靠的大模型落地方案。
2026-01-14 09:57:17
648
原创 工业多模态输入实战!截图 + 语音双输入无冲突(CLIP+Whisper + 语义对齐)
本文针对工业场景下工程师难以打字反馈故障的问题,提出了一套多模态输入解决方案。系统通过CLIP模型结合工业术语词典实现图像故障特征提取(准确率94%),采用Whisper模型配合方言适配和降噪处理语音输入(错误率8%),并设计了语义对齐机制解决多模态冲突问题(对齐准确率96%)。方案特别强调工业场景的实用性,通过ROI裁剪、术语约束、追问机制等优化,相比通用模型显著提升了操作效率和准确性。测试数据显示,该方案使工程师操作满意度提升30%,故障处理效率提高40%,为工业智能化提供了切实可行的技术路径。
2026-01-14 09:56:55
489
原创 工业大模型落地复盘:4 大核心难点 + 可复用方法论(转行 / 无经验必看)
本文总结了工业大模型落地过程中的四大核心难点及解决方案:1)工业数据"脏、杂、专"问题,通过协议专属解析和标注质量控制提升数据质量;2)模型微调过拟合问题,采用数据重排和术语对比损失优化;3)RAG增量更新慢问题,通过分层索引和动态权重调度改善;4)工程化部署稳定性问题,实施动态资源切片和全链路监控。文章提炼出工业大模型落地五步方法论(需求调研、技术选型、数据处理、模型优化、工程部署),强调业务思维优先、细节把控和闭环迭代的重要性。
2026-01-14 09:56:29
531
原创 RAG + 模型融合实战!工业场景检索延迟从 200ms→80ms(动态权重 + 分层索引 + 三级检索)
本文探讨了工业大模型中RAG与微调模型的融合方案,针对工业场景的三大痛点(知识更新滞后、优先级差异、检索精准度不足),提出分层索引、动态权重和三级检索的创新方法。通过Milvus分层索引将增量更新时间从2小时缩短至10分钟,设计区域/紧急度/时间/解决率四维动态权重确保核心故障优先处理,采用BM25+BGE-1.5+Cross-Encoder三级检索使准确率达98%。最终实现RAG负责实时知识检索、微调模型精准生成的结构化闭环,新设备适配率提升36%,核心场景方案准确率100%,推理延迟控制在320ms内。
2026-01-13 16:11:08
687
原创 4 卡 A100 微调 Qwen2.5-14B 实战!工业术语准确率从 88%→95%
本文详细介绍了工业大模型Qwen2.5-14B的微调全流程,重点解决工业场景特有的三大挑战:术语准确率、结构化输出和模型幻觉问题。通过LoRA微调技术,在4卡A100上实现了高效训练,包括数据集优化(标准化格式、平衡分布)、核心参数配置(r=8的低秩矩阵)以及训练过程中的三大致命坑解决方案(数据分布偏移、术语混淆和非结构化输出)。最终模型在工业测试集上表现优异:术语准确率达95%,结构化输出100%达标,方案实操通过率92%。
2026-01-13 15:03:07
499
原创 工业数据处理避坑指南!Profinet/Modbus 日志结构化 + PDF 表格提取
协议解析规则:正则表达式+字段映射(S\d+-\d+);(.*?(.*?)(%|$)","device_model": lambda x: f"交换机{x.split('-')[0]}" if x.startswith("S57") else "未知",
2026-01-13 11:42:26
555
原创 不吹不黑!车企大模型选型实测,3 款基础模型 + 3 类组件真实对比
本文针对工业大模型项目的技术选型问题,提出了避免盲目堆技术的核心原则,并提供了实测对比结果。摘要如下: 基础模型选型:实测对比Qwen2.5-14B、LLaMA3-14B和ChatGLM4-14B三款模型,Qwen2.5-14B以93%工业术语准确率、250ms推理延迟和良好国产化适配胜出。 向量库选型:Milvus凭借80ms检索延迟、分布式支持和内网部署能力,成为处理2亿工业数据的首选,优于FAISS和Pinecone。
2026-01-13 11:35:33
760
原创 对接车企总装车间!运维大模型真实需求拆解,3 大痛点催生的定制化方案
本文针对工业运维场景中的三大痛点——故障排查耗时、术语理解偏差和知识碎片化,提出了一套智能问答系统解决方案。系统采用四层架构设计:输入层支持文本、语音、图像多模态输入并归一化处理;知识层通过结构化知识库、Milvus向量库和术语库实现知识整合;推理层结合RAG检索和微调后的Qwen2.5-14B模型;决策层通过结构化输出和三级校验确保方案准确性。该方案能将故障查询延迟控制在200ms内,方案准确率达90%以上,故障排查时长缩短40%,单条生产线年节省停线损失28万元。
2026-01-13 11:31:08
761
原创 封神!18 个国产 AI 硬核用法实测(附官网链接),打工人 / 学生党 / 程序员直接抄,每天省 3 小时(专业级案例)
国产AI工具崛起,办公学习效率倍增!实测豆包、千问、文心一言等国产AI在职场、科研、创作等场景表现出色:职场人可用WPSAI一键生成PPT,千问编写代码;学生党用文心一言排版论文公式,豆包撰写文献综述;创作者用CanvaAI设计海报,豆包生成多平台文案。使用技巧包括精准指令公式(场景+需求+格式+约束)和任务拆解,避免指令模糊和工具混杂。这些工具已能替代ChatGPT,大幅提升工作效率,每天可节省3小时。
2026-01-04 09:56:29
694
1
原创 面试必背!汽车底盘运维大模型项目 30 个定制化问题 + 深度解析,0 经验也能轻松通关
摘要:本文详细拆解汽车底盘运维智能系统项目的30个定制化面试问题,覆盖数据层、技术层、业务与部署层全流程。重点剖析了数据分布不均处理、LLaMA3微调、RAG优化、模型幻觉抑制等核心技术难点,并提供真实落地细节和面试话术模板。项目通过分层抽样、QLoRA微调、工业级Agent设计等方案,实现术语理解准确率90%、幻觉率8%、3条生产线年省84万等显著效果。文章还分享了部署优化、持续迭代等实战经验,帮助求职者在面试中展现真实的项目落地能力。
2026-01-04 09:49:36
710
1
原创 转行大模型简历项目经验深度写法!4 步写出 “被追问” 的落地经历
摘要:本文针对转行大模型领域的简历撰写痛点,提出避免"罗列技术栈的错误写法,转而采用步深度写法:1)拆解业务痛点;2)量化技术动作;3)突出核心难点;4)绑定商业价值。通过汽车底盘运维智能系统案例,展示如何将普通项目写出深度,包括数据预处理、模型微调、RAG优化等具体细节,并强调量化结果(如术语理解率提升30%)。文章还提供3个项目改写示例和适配技巧,帮助0经验者展现落地能力,让面试官主动追问技术细节。
2026-01-04 09:48:44
772
1
原创 (七)大模型工程落地与部署 10 题!vLLM/QPS 优化 / 高可用,面试实战必备(工程篇)
本文聚焦大模型工程部署的核心实践,涵盖七大关键场景:1)部署形态选择(单机/多卡/分布式)的硬件匹配与性能指标;2)vLLM优化技巧(量化+动态批处理)实现QPS从5到20的提升;3)高可用架构设计(三副本+监控告警)保障99.99%可用性;4)故障排查四步法(硬件→服务→模型→基线);5)模型更新策略(蓝绿/滚动/金丝雀);6)容器化部署规范(Docker+K8s配置);7)跨地域延迟优化方案。提供可直接复用的命令行、配置参数和面试话术,帮助工程师快速掌握生产级部署能力。
2026-01-04 09:47:29
842
1
原创 (六)大模型算法与优化 15 题!量化 / 剪枝 / 幻觉缓解,面试说清性能提升逻辑(深度篇)
摘要:本文深入解析大模型算法优化的核心技术与工程实践,涵盖量化、剪枝、上下文扩展等7大高频面试题。重点剖析INT8/INT4/FP8量化差异、结构化剪枝优势、显存OOM解决方案、RoPE/ALiBi扩展技术等实战要点,提供可直接落地的优化方案和面试话术。针对模型蒸馏、混合精度训练等深度技术,给出参数配置和效果对比。全文聚焦资深岗位必备的算法优化能力,帮助求职者掌握从理论到工程的全链路优化方法,冲击高薪offer。
2026-01-04 09:46:58
790
1
原创 (五)LangChain 与 Agent15 题!ReAct 机制 + 工具调用 + 容错设计,面试项目加分(应用篇)
本文系统讲解LangChain与Agent在大模型应用开发中的核心技能。内容涵盖:1)LangChain五大组件(Chains、Agents、Memory、Tools、DocumentLoaders)的功能解析;2)Agent的ReAct决策机制与工具调用容错方案;3)多轮对话的Memory配置优化技巧;4)开源LLM推理速度提升方法;5)LangChain与LlamaIndex的定位差异。通过智能客服、数据分析助手等真实案例,提供可直接落地的工程解决方案,包括代码示例、异常处理策略和性能优化手段。
2026-01-03 15:10:49
785
1
原创 (四)RAG 检索增强 15 题!Milvus / 混合检索 / 幻觉抑制,面试必懂企业刚需技术(落地篇)
本文分享了RAG(检索增强生成)在企业落地中的关键技术和面试要点。文章详细解析了RAG的三个核心模块(检索器、排序器、生成器)及其优化方法,包括向量数据库选型(Milvus、Chroma、Pinecone)、召回率提升方案、幻觉抑制技巧和延迟优化策略。针对面试场景,提供了可直接背诵的回答话术,涵盖8个高频问题及解决方案,如文档分块策略、混合检索实现、知识库更新方法等。最后指出RAG在知识更新和事实准确性上的优势,并预告下篇将讲解LangChain与Agent技术。全文聚焦实际落地经验,帮助求职者应对企业面试
2026-01-03 14:59:03
705
原创 (三)模型微调技术 20 题!LoRA/Q-LoRA/PPO/DPO 落地细节,面试说清微调全流程(实战篇)
【摘要】本文针对大模型微调面试高频问题,提供10个实战案例解析,涵盖LoRA/Q-LoRA选型、PPO/DPO差异、过拟合解决等核心考点。关键点包括:1)Q-LoRA采用NF4量化技术,7B模型显存仅需6GB;2)DPO训练速度比PPO快3-5倍,适合小数据场景;3)LoRA过拟合可通过降低秩r、加入Dropout和混合训练解决;4)学习率选择需结合扫描测试与训练曲线观察;5)灾难性遗忘可通过混合预训练数据+PEFT方法缓解。全文聚焦工程落地细节,提供可直接复用的面试话术,帮助候选人在技术面中展现实操能力。
2026-01-03 14:30:16
619
1
原创 (二)多模态大模型 15 题!GPT-4V/LLaVA 核心设计 + 显存优化,2026 面试必背(进阶篇)
本文总结了多模态大模型面试高频考点,包含8道核心题目及7道补充题。重点解析了模态对齐、CLIP预训练、GPT-4V设计优势等关键技术,提供了可直接背诵的面试话术模板,并标注了常见易错点。文章特别强调工程落地能力,针对图像分辨率处理、显存优化等实际问题给出具体解决方案。最后预告将深入讲解模型微调技术,帮助求职者系统掌握大厂面试必备的多模态知识体系。全文以实战为导向,融合真实案例和量化数据,适合进阶选手快速提升面试竞争力。
2026-01-03 14:23:51
876
原创 (一)大模型基础理论 TOP20 题!背完初面直接通关 —— 我带 100 + 人上岸的真实面试笔记(小白入门篇)
摘要:本文总结了3年大模型面试辅导经验,揭示80%求职者因基础题回答不深入而失利。精选10道初面高频题,如Transformer结构差异、自注意力机制等,每题拆解原理、易错点和应对话术。例如,强调Encoder的双向理解与Decoder的单向生成差异,指出常见错误(如忽略掩码作用),并提供可直接背诵的面试答案。同时补充10道简洁版高频题,涵盖架构选择、数据长度优化等实用技巧。文章指出,掌握这些基础题是面试成功的关键,后续将探讨多模态大模型等进阶内容。
2026-01-03 14:19:48
811
1
原创 2026 NLP(自然语言处理)算法 最全面面试题汇总
【NLP算法 最全面面试题(48+页)】详细面试题资料,领取方式: https://www.bilibili.com/video/BV1fF411J7C9/
2022-02-11 14:27:28
5924
原创 2026 深度学习算法 最全面面试题汇总
【深度学习算法 最全面面试题(30页)】详细面试题资料,领取方式: https://www.bilibili.com/video/BV1pi4y197bT/
2022-02-11 14:23:23
2318
原创 2022 机器学习岗位算法 最全面面试题汇总
【老铁们,2022机器学习算法最全面面试题 来给您送福利了!-人工智能/AI算法/ML算法 【机器学习算法 最全面面试题(61页)】详细面试题资料,请添加VX: cc52757760 备注: ML,友情价领取,期待赢得您的认可!本资料有详细的知识体系目录,从机器学习模型,线性模型(LR,Lasso,Ridge),验证方式(过拟合,欠拟合,交叉验证等),分类,正则化,特征工程,决策树,...
2022-02-11 14:13:13
5549
原创 OpenCV使用总结
OpenCV手册文章目录OpenCV手册1. OpenCV安装2. OpenCV基本操作1)读取、图像、保存图像3. 图像色彩操作1)彩色图像转换为灰度图像2)色彩通道操作3)灰度直方图均衡化4)彩色亮度直方图均衡化5)色彩提取6)二值化与反二值化4. 图像形态操作1)图像翻转2)图像仿射变换3)图像缩放4)图像裁剪5)图像相加6)图像相减7)透视变换8)图像腐蚀9)图像膨胀10)图像开运算11)图像闭运算12)形态学梯度5. 图像梯度处理1)模糊处理2)图像锐化处理3)边沿检测6. 轮廓处理1)查找并绘
2021-10-16 17:32:11
1989
1
原创 人体骨骼关键点检测的算法
1.AlphaPose实时全身多人姿势估计与跟踪系统https://github.com/MVIG-SJTU/AlphaPose.gitgit clone -b pytorch https://github.com/MVIG-SJTU/AlphaPose.gitpython demo.py --indir examples/demo --outdir examples/res --sppython video_demo.py --video D:/cpl.mp4 --outdir example
2021-10-09 21:07:13
17987
7
原创 Numpy常用语法总结
文章目录1.array的创建1.1 创建全0数组1.2 创建全1的数组1.3 创建所有值都相同的数组2.arange的用法3.linspace的用法4.random的用法5.函数运算6.聚合运算7.arg运算partition使用8.掩码9.数组操作9.1 数组去重9.2 插入元素9.3 合并9.4 分割1.array的创建1.1 创建全0数组np.zeros(10):默认为float64类型的一维全0数组;np.zeros((3, 5),dtype = int):类型为int的3行5列的矩阵;1
2021-05-03 23:28:22
432
【最厉害面试秘籍】伙伴们,2022深度学习算法最全面面试题 来给您拜年了!
2021-01-26
【最强面试宝典】童鞋们,2022计算机视觉岗位算法 复习流程及面试题汇总 来给您送福利了!
2022-01-15
计算机视觉面试-提纲.docx
2021-10-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅