- 博客(50)
- 资源 (5)
- 收藏
- 关注
原创 无经验转行大模型?我靠汽车底盘运维大模型拿 3 家 offer,8 卡 A100 微调 + VLLM 部署全拆
【企业级AI运维实战:汽车零部件厂智能系统全解析】 本文详细拆解了一个汽车底盘零部件厂的设备运维AI系统落地案例,涵盖从数据处理到部署的全流程技术细节: 真实痛点解决: 结构化处理1200条维修工单,将故障排查时间缩短40% 针对专业术语理解问题(准确率仅58%),采用LLaMA3-8B+QLoRA微调方案 建立知识库降低40%重复排查率 核心技术栈: 数据处理:Pandas清洗+正则表达式结构化 模型训练:8卡A100 QLoRA微调(显存优化90%) RAG优化:Chroma+FAQ前置过滤(延迟降低8
2026-01-02 21:05:25
1008
原创 无经验转行大模型?车载多模态项目全拆解(vLLM+QLoRA + 代码可跑),3 人靠它拿 offer
本文分享了一个车载多模态大模型项目的实战经验,重点解决零经验开发者如何通过具体项目进入大模型领域。文章详细拆解了从模型选型(Qwen2.5-VL-32B)、多模态融合(含语音降噪、手势识别等核心代码)、QLoRA微调(4卡A100优化车载术语识别)到vLLM边缘部署(Jetson AGX Orin量化优化)的全流程。特别针对车载场景的特殊需求(如低延迟、容错处理)提供了可复用的解决方案,并总结了数据清洗、术语区分等关键踩坑经验。该项目已帮助多位零经验开发者获得自动驾驶公司offer,强调企业更看重落地细节而
2026-01-02 19:36:22
422
原创 无经验转行大模型?我靠 1 个行业落地项目拿 3 家 offer,QLoRA+vLLM 细节全拆
本文分享零经验转行大模型的实战方法,通过定制"行业私有知识库+智能路径规划"项目,帮助求职者2周内获得3家AI公司面试机会。项目包含三大核心技术:1)知识图谱三层关联与动态权重设计;2)QLoRA微调的参数优化与问题解决;3)vLLM部署的高并发优化方案。文章强调企业更看重解决实际问题的能力而非工具使用,并提供面试应答话术模板。最后指出项目具有行业适配性,可快速调整应用于金融、医疗等不同领域,建议零经验者聚焦落地项目而非通用Demo。
2026-01-02 19:13:44
552
原创 转行AI必看!3个月打造大模型私有知识库项目,面试狂拿3个offer(附QLoRA微调+Milvus部署全流程)
转行AI时缺乏真实项目经验是致命短板。本文通过一个家电售后技术支持系统案例,展示了如何打造符合企业需求的大模型项目:1)业务价值方面,维修查询时间从15分钟降至2分钟,客户流失率降低76%;2)技术选型上,基于业务需求选择Qwen2.5-14B、Milvus、LangChain等技术栈,并详细说明决策依据;3)提供面试应答模板,强调"技术解决业务问题+数据支撑价值"的表达逻辑。文章还分享了QLoRA微调、分集合存储等核心代码片段及踩坑经验,帮助求职者打造有竞争力的项目作品。
2026-01-02 13:12:19
706
原创 无经验转行大模型?我靠1个行业落地项目拿3家offer,QLoRA+vLLM细节全拆
前阵子帮一个同学做大模型求职,他的情况太典型了——学了大半年大模型,从LangChain到Milvus全跟着教程跑过,但手里只有一个“通用知识库Demo”,简历写“熟悉大模型微调与部署”,投了40家公司,连1个面试都没拿到。后来加了任务队列和锁机制,高优先级任务先执行,低优先级排队,这个问题就解决了。整个适配过程只花了5天,不用重构核心架构,零经验同学也能快速上手,面试时可以说“我做的项目能快速适配不同行业,当时从企业服务改成金融方向,只调整了数据和部分规则,核心技术架构不用动”,体现项目的扩展性。
2026-01-02 12:06:22
541
原创 无大模型项目拿不到面试?我帮多个转行同学定制车载多模态项目,面试问答全设计好
本文纯实战分享:应届生/转行做大模型,最缺的不是技术知识,是“能落地、能说清、面试官爱问”的项目——我用「车载多模态认知智能交互系统」帮3个零项目经验的同学定制化包装,从模型架构到微调踩坑,从技术难点到面试话术全打通,现在他们都拿到了AI公司的面试邀约,甚至有人过了字节二面。很多人以为定制项目就是“给个代码包”,错了!不用怕没经验,我们帮你把“零基础”包装成“有潜力”,把“模糊的项目”变成“面试加分项”,帮你少走弯路,高效拿到意向offer~二、我们帮你做的,不只是“一个项目”,是“能应对面试的全套方案”
2026-01-01 22:20:21
679
原创 图像处理-最常见面试题(必问)
文章目录1.图像预处理有哪些方法?1.1 高斯滤波器原理介绍?2.图像增强有哪些方法?3.图像的特征提取有哪些算法?3.1 HOG(方向梯度直方图)3.2 SIFT(尺度不变特征变换)3.3 SURF(加速稳健特征,对sift的改进)3.4 DOG(高斯函数差分)3.5 LBP(局部二值模式)3.6 HAAR3.7 SIFT vs HOG4.膨胀和腐蚀含义?开运算和闭运算先后顺序?5.传统的边缘检测算子有哪些?5.1 索贝尔算子(Sobel)5.2 加权平均算子(Isotropic Sobel)5.3 罗伯
2021-03-02 18:02:00
12529
原创 深度学习-第二章 卷积神经网络面试题(大厂必问,历经半年整理)
文章目录1.[神经网络](%28https://blog.csdn.net/cc13186851239/article/details/113983560%29)2.CNN2.1卷积神经网络的结构2.2 Keras搭建CNN2.2经典网络分类2.2.1 LeNet2.2.2 AlexNet2.2.2.1 AlexNet 对比LeNet 的优势?2.2.3 VGG2.2.3.1 VGG使用2个3*3卷积的优势在哪里?2.2.3.2 每层卷积是否只能用一种尺寸的卷积核?2.2.4 Inception(GoogL
2021-02-24 19:21:19
8185
1
原创 深度学习-第一章 神经网络面试题(大厂必问,历经半年整理)
文章目录1.神经网络1.1各个激活函数的优缺点?1.2 为什么ReLU常用于神经网络的激活函数?1.3 梯度消失和梯度爆炸的解决方案?梯度爆炸引发的问题?1.4如何确定是否出现梯度爆炸?1.5神经网络中有哪些正则化技术?1.6 批量归一化(BN) 如何实现?作用?1.6.1 BN为什么防止过拟合?1.7谈谈对权值共享的理解?1.8 对fine-tuning(微调模型)的理解?为什么要修改最后几层神经网络权值?1.9 什么是Dropout?原理?为什么有用?它是如何工作的?1.10如何选择dropout 的概
2021-02-23 13:28:58
7932
原创 封神!18 个国产 AI 硬核用法实测(附官网链接),打工人 / 学生党 / 程序员直接抄,每天省 3 小时(专业级案例)
国产AI工具崛起,办公学习效率倍增!实测豆包、千问、文心一言等国产AI在职场、科研、创作等场景表现出色:职场人可用WPSAI一键生成PPT,千问编写代码;学生党用文心一言排版论文公式,豆包撰写文献综述;创作者用CanvaAI设计海报,豆包生成多平台文案。使用技巧包括精准指令公式(场景+需求+格式+约束)和任务拆解,避免指令模糊和工具混杂。这些工具已能替代ChatGPT,大幅提升工作效率,每天可节省3小时。
2026-01-04 09:56:29
401
1
原创 面试必背!汽车底盘运维大模型项目 30 个定制化问题 + 深度解析,0 经验也能轻松通关
摘要:本文详细拆解汽车底盘运维智能系统项目的30个定制化面试问题,覆盖数据层、技术层、业务与部署层全流程。重点剖析了数据分布不均处理、LLaMA3微调、RAG优化、模型幻觉抑制等核心技术难点,并提供真实落地细节和面试话术模板。项目通过分层抽样、QLoRA微调、工业级Agent设计等方案,实现术语理解准确率90%、幻觉率8%、3条生产线年省84万等显著效果。文章还分享了部署优化、持续迭代等实战经验,帮助求职者在面试中展现真实的项目落地能力。
2026-01-04 09:49:36
471
原创 转行大模型简历项目经验深度写法!4 步写出 “被追问” 的落地经历
摘要:本文针对转行大模型领域的简历撰写痛点,提出避免"罗列技术栈的错误写法,转而采用步深度写法:1)拆解业务痛点;2)量化技术动作;3)突出核心难点;4)绑定商业价值。通过汽车底盘运维智能系统案例,展示如何将普通项目写出深度,包括数据预处理、模型微调、RAG优化等具体细节,并强调量化结果(如术语理解率提升30%)。文章还提供3个项目改写示例和适配技巧,帮助0经验者展现落地能力,让面试官主动追问技术细节。
2026-01-04 09:48:44
629
原创 (七)大模型工程落地与部署 10 题!vLLM/QPS 优化 / 高可用,面试实战必备(工程篇)
本文聚焦大模型工程部署的核心实践,涵盖七大关键场景:1)部署形态选择(单机/多卡/分布式)的硬件匹配与性能指标;2)vLLM优化技巧(量化+动态批处理)实现QPS从5到20的提升;3)高可用架构设计(三副本+监控告警)保障99.99%可用性;4)故障排查四步法(硬件→服务→模型→基线);5)模型更新策略(蓝绿/滚动/金丝雀);6)容器化部署规范(Docker+K8s配置);7)跨地域延迟优化方案。提供可直接复用的命令行、配置参数和面试话术,帮助工程师快速掌握生产级部署能力。
2026-01-04 09:47:29
604
原创 (六)大模型算法与优化 15 题!量化 / 剪枝 / 幻觉缓解,面试说清性能提升逻辑(深度篇)
摘要:本文深入解析大模型算法优化的核心技术与工程实践,涵盖量化、剪枝、上下文扩展等7大高频面试题。重点剖析INT8/INT4/FP8量化差异、结构化剪枝优势、显存OOM解决方案、RoPE/ALiBi扩展技术等实战要点,提供可直接落地的优化方案和面试话术。针对模型蒸馏、混合精度训练等深度技术,给出参数配置和效果对比。全文聚焦资深岗位必备的算法优化能力,帮助求职者掌握从理论到工程的全链路优化方法,冲击高薪offer。
2026-01-04 09:46:58
577
原创 (五)LangChain 与 Agent15 题!ReAct 机制 + 工具调用 + 容错设计,面试项目加分(应用篇)
本文系统讲解LangChain与Agent在大模型应用开发中的核心技能。内容涵盖:1)LangChain五大组件(Chains、Agents、Memory、Tools、DocumentLoaders)的功能解析;2)Agent的ReAct决策机制与工具调用容错方案;3)多轮对话的Memory配置优化技巧;4)开源LLM推理速度提升方法;5)LangChain与LlamaIndex的定位差异。通过智能客服、数据分析助手等真实案例,提供可直接落地的工程解决方案,包括代码示例、异常处理策略和性能优化手段。
2026-01-03 15:10:49
742
1
原创 (四)RAG 检索增强 15 题!Milvus / 混合检索 / 幻觉抑制,面试必懂企业刚需技术(落地篇)
本文分享了RAG(检索增强生成)在企业落地中的关键技术和面试要点。文章详细解析了RAG的三个核心模块(检索器、排序器、生成器)及其优化方法,包括向量数据库选型(Milvus、Chroma、Pinecone)、召回率提升方案、幻觉抑制技巧和延迟优化策略。针对面试场景,提供了可直接背诵的回答话术,涵盖8个高频问题及解决方案,如文档分块策略、混合检索实现、知识库更新方法等。最后指出RAG在知识更新和事实准确性上的优势,并预告下篇将讲解LangChain与Agent技术。全文聚焦实际落地经验,帮助求职者应对企业面试
2026-01-03 14:59:03
634
原创 (三)模型微调技术 20 题!LoRA/Q-LoRA/PPO/DPO 落地细节,面试说清微调全流程(实战篇)
【摘要】本文针对大模型微调面试高频问题,提供10个实战案例解析,涵盖LoRA/Q-LoRA选型、PPO/DPO差异、过拟合解决等核心考点。关键点包括:1)Q-LoRA采用NF4量化技术,7B模型显存仅需6GB;2)DPO训练速度比PPO快3-5倍,适合小数据场景;3)LoRA过拟合可通过降低秩r、加入Dropout和混合训练解决;4)学习率选择需结合扫描测试与训练曲线观察;5)灾难性遗忘可通过混合预训练数据+PEFT方法缓解。全文聚焦工程落地细节,提供可直接复用的面试话术,帮助候选人在技术面中展现实操能力。
2026-01-03 14:30:16
575
原创 (二)多模态大模型 15 题!GPT-4V/LLaVA 核心设计 + 显存优化,2026 面试必背(进阶篇)
本文总结了多模态大模型面试高频考点,包含8道核心题目及7道补充题。重点解析了模态对齐、CLIP预训练、GPT-4V设计优势等关键技术,提供了可直接背诵的面试话术模板,并标注了常见易错点。文章特别强调工程落地能力,针对图像分辨率处理、显存优化等实际问题给出具体解决方案。最后预告将深入讲解模型微调技术,帮助求职者系统掌握大厂面试必备的多模态知识体系。全文以实战为导向,融合真实案例和量化数据,适合进阶选手快速提升面试竞争力。
2026-01-03 14:23:51
786
原创 (一)大模型基础理论 TOP20 题!背完初面直接通关 —— 我带 100 + 人上岸的真实面试笔记(小白入门篇)
摘要:本文总结了3年大模型面试辅导经验,揭示80%求职者因基础题回答不深入而失利。精选10道初面高频题,如Transformer结构差异、自注意力机制等,每题拆解原理、易错点和应对话术。例如,强调Encoder的双向理解与Decoder的单向生成差异,指出常见错误(如忽略掩码作用),并提供可直接背诵的面试答案。同时补充10道简洁版高频题,涵盖架构选择、数据长度优化等实用技巧。文章指出,掌握这些基础题是面试成功的关键,后续将探讨多模态大模型等进阶内容。
2026-01-03 14:19:48
721
原创 2026 NLP(自然语言处理)算法 最全面面试题汇总
【NLP算法 最全面面试题(48+页)】详细面试题资料,领取方式: https://www.bilibili.com/video/BV1fF411J7C9/
2022-02-11 14:27:28
5909
原创 2026 深度学习算法 最全面面试题汇总
【深度学习算法 最全面面试题(30页)】详细面试题资料,领取方式: https://www.bilibili.com/video/BV1pi4y197bT/
2022-02-11 14:23:23
2314
原创 2022 机器学习岗位算法 最全面面试题汇总
【老铁们,2022机器学习算法最全面面试题 来给您送福利了!-人工智能/AI算法/ML算法 【机器学习算法 最全面面试题(61页)】详细面试题资料,请添加VX: cc52757760 备注: ML,友情价领取,期待赢得您的认可!本资料有详细的知识体系目录,从机器学习模型,线性模型(LR,Lasso,Ridge),验证方式(过拟合,欠拟合,交叉验证等),分类,正则化,特征工程,决策树,...
2022-02-11 14:13:13
5545
原创 OpenCV使用总结
OpenCV手册文章目录OpenCV手册1. OpenCV安装2. OpenCV基本操作1)读取、图像、保存图像3. 图像色彩操作1)彩色图像转换为灰度图像2)色彩通道操作3)灰度直方图均衡化4)彩色亮度直方图均衡化5)色彩提取6)二值化与反二值化4. 图像形态操作1)图像翻转2)图像仿射变换3)图像缩放4)图像裁剪5)图像相加6)图像相减7)透视变换8)图像腐蚀9)图像膨胀10)图像开运算11)图像闭运算12)形态学梯度5. 图像梯度处理1)模糊处理2)图像锐化处理3)边沿检测6. 轮廓处理1)查找并绘
2021-10-16 17:32:11
1968
1
原创 人体骨骼关键点检测的算法
1.AlphaPose实时全身多人姿势估计与跟踪系统https://github.com/MVIG-SJTU/AlphaPose.gitgit clone -b pytorch https://github.com/MVIG-SJTU/AlphaPose.gitpython demo.py --indir examples/demo --outdir examples/res --sppython video_demo.py --video D:/cpl.mp4 --outdir example
2021-10-09 21:07:13
17934
7
原创 Numpy常用语法总结
文章目录1.array的创建1.1 创建全0数组1.2 创建全1的数组1.3 创建所有值都相同的数组2.arange的用法3.linspace的用法4.random的用法5.函数运算6.聚合运算7.arg运算partition使用8.掩码9.数组操作9.1 数组去重9.2 插入元素9.3 合并9.4 分割1.array的创建1.1 创建全0数组np.zeros(10):默认为float64类型的一维全0数组;np.zeros((3, 5),dtype = int):类型为int的3行5列的矩阵;1
2021-05-03 23:28:22
428
原创 英语演讲稿
文章目录英文First point: Only hard work can change the fateSecond point: Only by focusing on work can we achieve better selfThird point:To treat others sincerely is a required course in life中文1.唯有努力才有可能改变命运2.专注做事,才能成就更好的自己3.真诚待人,是人生的一门必修课英文Good morning, teache
2021-04-23 14:00:44
836
2
原创 深度学习环境搭建
Ubuntu 16.04深度学习环境搭建显卡驱动的安装删除旧的显卡驱动无线网卡驱动配置1.CUDA2.cuDNN3.Anaconda3.84.Pip源配置5.tensorflowChromePyCharm卸载python2.7显卡驱动的安装查看显卡驱动: lshw -numeric -C display安装推荐版本的显卡驱动,使用命令:ubuntu-drivers devices安装驱动: sudo apt install nvidia-430Nvidia驱动下载 :https://www
2021-04-17 16:08:34
263
1
原创 TensorRt&&部署问题
文章目录1.什么是TensorRt?2.安装TensorRt1.什么是TensorRt?2.安装TensorRt下载地址: https://developer.nvidia.com/zh-cn/tensorrt
2021-03-19 19:44:25
1092
1
原创 机器学习 面试题-第十章 集成学习(大厂必问,历经半年整理)
集成学习非常重要,以下题目非常全!10.集成学习10.1 Boosting(提升法)10.1.1 梯度提升(GBDT)10.1.1.1 GBDT是训练过程如何选择特征?10.1.1.2 GBDT如何防止过拟合?由于gbdt是前向加法模型,前面的树往往起到决定性的作用,如何改进这个问题?10.1.1.3 梯度提升的如何调参?10.1.1.4 GBDT对标量特征要不要one-hot编码?10.1.1.5 为什么GBDT用负梯度当做残差?10.1.2自适应提升(AdaBoost)10.1.2.1 为什么Adab
2021-03-04 21:18:30
1792
1
原创 机器学习 面试题-第九章 SVM(大厂必问,历经半年整理)
文章目录9.SVMSVM的推导9.1 SVM的原理是什么?9.2 SVM 为什么采用间隔最大化?9.3 为什么 SVM 要引入核函数?9.4 为什么SVM对缺失数据敏感?9.5 SVM 核函数之间的区别9.6 SVM如何处理多分类问题?9.7 带核的SVM为什么能分类非线性问题?9.8 RBF核一定是线性可分的吗?9.9 常用核函数及核函数的条件?9.10 为什么要将求解 SVM 的原始问题转换为对偶问题?9.11 SVM怎么输出预测概率?9.12 如何处理数据偏斜?9.13 LR vs SVM9.14 参
2021-03-04 21:09:00
986
1
原创 机器学习 面试题-第八章 KNN(大厂必问,历经半年整理)
文章目录8.KNN8.1 简述一下KNN算法的原理?8.2 如何理解kNN中的k的取值?8.3 在kNN的样本搜索中,如何进行高效的匹配查找?8.4 KNN算法有哪些优点和缺点?8.5 不平衡的样本可以给KNN的预测结果造成哪些问题,有没有什么好的解决方式?8.6 为了解决KNN算法计算量过大的问题,可以使用分组的方式进行计算,简述一下该方式的原理。8.7 如何优化Kmeans?8.8 在k-means或kNN,我们是用欧氏距离来计算最近的邻居之间的距离。为什么不用曼哈顿距离?8.9 参数说明以及调参8.
2021-03-04 21:03:34
1870
2
原创 机器学习 面试题-第七章 决策树(大厂必问,历经半年整理)
文章目录7.决策树7.1 ID3算法7.2 C4.5算法7.2.1 既然信息增益可以计算,为什么C4.5还使用信息增益比?7.3 CART算法7.3.1 基尼指数和信息熵都表示数据不确定性,为什么CART使用基尼指数?7.3.2 基尼系数(Gini)存在的问题?7.4 ID3 vs C4.5 vs CART7.5 决策树7.5.1 决策树的数据split原理或者流程?7.5.2 构造决策树的步骤?7.5.3 决策树算法中如何避免过拟合和欠拟合?7.5.4 决策树怎么剪枝?7.5.5 决策树的优缺点?7.5
2021-03-03 21:29:26
2579
1
原创 机器学习 面试题-第六章 特征工程(大厂必问,历经半年整理)
文章目录6.特征工程6.1 特征选择6.1.1 什么是特征选择?为什么需要它?特征选择的目标?6.1.2 有哪些特征选择技术?6.2 特征提取6.3 特征选择 vs 特征提取6.4为什么要处理类别特征?怎么处理?6.5 什么是组合特征?6.6 怎么有效地找到组合特征?6.7 如何处理高维组合特征?6.8 如何解决数据不平衡问题?6.9 数据中有噪声如何处理?6.10 FM6.10.1 SVM vs FM6.11 FFM6.特征工程特征工程分三步: ①数据预处理;②特征选择;③特征提取。6.1 特征
2021-03-03 21:24:09
1697
1
原创 机器学习 面试题-第五章 正则化(大厂必问,历经半年整理)
文章目录5.正则化手推L1,L25.1 什么是正则化?如何理解正则化?5.2 L0、L1、L2正则化?5.3 L1和L2正则化有什么区别?5.4 L1在0处不可导是怎么处理的?5.5 L1正则化产生稀疏性的原因?对稀疏矩阵的理解?5.6 为何要常对数据做归一化?5.7 归一化的种类5.8 归一化和标准化的区别5.9 需要归一化的算法有哪些?这些模型需要归一化的主要原因?5.10 树形结构的不需要归一化的原因?5.正则化手推L1,L25.1 什么是正则化?如何理解正则化?定义: 在损失函数后加上一
2021-03-03 21:21:17
1093
1
原创 机器学习 面试题-第四章 评估指标(大厂必问,历经半年整理)
文章目录4.评估指标4.1 什么是准确率,精准率,召回率和F1分数?混淆矩阵4.2 模型常用的评估指标有哪些?4.2.1 Precision(查准率)4.2.2 Recall(查全率)4.2.3 P-R曲线4.2.4 F1-Score4.2.5 ROC和AUC4.2.5.1什么是ROC曲线?如何判断 ROC 曲线的好坏?4.2.5.2 什么是AUC?4.2.5.3 如何解释AU ROC分数?4.3 多标签分类怎么解决?4.评估指标4.1 什么是准确率,精准率,召回率和F1分数?混淆矩阵准确率 = (
2021-03-03 21:18:47
523
1
原创 机器学习 面试题-第三章 验证方式(大厂必问,历经半年整理)
文章目录3.验证方式3.1什么是过拟合?产生过拟合原因?3.2 如何避免过拟合问题?3.3 什么是机器学习的欠拟合?3.4 如何避免欠拟合问题?3.5 什么是交叉验证?交叉验证的作用是什么?3.6 交叉验证主要有哪几种方法?3.7 什么是K折交叉验证?3.8 如何在K折交叉验证中选择K?3.9 网格搜索(GridSearchCV)3.10随机搜素(RandomizedSearchCV)3.验证方式3.1什么是过拟合?产生过拟合原因?指模型在训练集上的效果很好,在测试集上的预测效果很差.1.数据有噪声
2021-03-03 21:13:27
750
1
原创 机器学习 面试题-第二章 线性模型(大厂必问,历经半年整理)
文章目录2.线性模型2.1 线性回归2.1.1 什么是回归?哪些模型可用于解决回归问题?2.1.2 线性回归的损失函数为什么是均方差?2.1.3 什么是线性回归?什么时候使用它?2.1.4 什么是梯度下降?SGD的推导?2.1.5 什么是最小二乘法(最小平方法)?2.1.6 常见的损失函数有哪些?2.1.7 有哪些评估回归模型的指标?2.1.8 什么是正规方程?2.1.9 梯度下降法找到的一定是下降最快的方向吗?2.1.10 MBGD需要注意什么?2.2 LRLR的推导2.2.1为什么 LR 要使用 si
2021-03-03 21:09:51
1699
1
原创 机器学习面试题-第一章 模型分类
文章目录1.机器学习模型1.1 有监督学习模型1.2 无监督学习模型1.3 概率模型1.4 什么是监督学习?什么是非监督学习?回归,分类,聚类方法的区别和联系并举例,简要介绍算法思路。生成模式 vs 判别模式生成模型:判别式模型:1.机器学习模型1.1 有监督学习模型1.2 无监督学习模型1.3 概率模型1.4 什么是监督学习?什么是非监督学习?所有的回归算法和分类算法都属于监督学习。并且明确的给给出初始值,在训练集中有特征和标签,并且通过训练获得一个模型,在面对只有特征而没有标签的数据时
2021-03-03 21:00:17
548
1
原创 深度学习-第七章 超参数调整-面试题
文章目录1.NN2.CNN3.RNN4.LSTM5.BP6.GAN7.超参数调整7.1 神经网络中包含哪些超参数?7.2 为什么要进行超参数调优?7.3 超参数的重要性顺序7.4 极端批样本数量下,如何训练网络?7.5 合理使用预训练网络7.5.1 什么是微调(fine-tune)7.5.2 微调有哪些不同方法?7.5.3 微调先冻结底层,训练顶层的原因?7.5.4 不同的数据集特性下如何微调?7.5.5 目标检测中使用预训练模型的优劣?7.5.6 目标检测中如何从零开始训练(train from scra
2021-02-28 16:38:50
1853
原创 深度学习-第六章 GAN面试题(大厂必问,历经半年整理)
文章目录1.NN2.CNN3.RNN4.LSTM5.BP6.GAN6.1 生成器6.2 判别器6.3 训练技巧1.NN神经网络最全面面试题2.CNN卷积神经网络最全面面试题3.RNN循环神经网络最全面面试题4.LSTM长短期记忆网络最全面面试题5.BP反向传播面试题6.GAN生成式对抗网络,由一个生成器网络和一个判别器网络组成。判别器的训练目的是能够区分生成器的输出与来自训练集的真实图像,生成器的训练目的是欺骗判别器。值得注意的是,生成器从未直接见过训练集中的图像,它所知道的关于数据
2021-02-28 16:18:37
4510
1
【最厉害面试秘籍】伙伴们,2022深度学习算法最全面面试题 来给您拜年了!
2021-01-26
【最强面试宝典】童鞋们,2022计算机视觉岗位算法 复习流程及面试题汇总 来给您送福利了!
2022-01-15
计算机视觉面试-提纲.docx
2021-10-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅