目录
1、HOG特征:
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。
(1)主要思想:
在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。
(2)具体的实现方法是:
首先将图像分成小的连通区域,我们把它叫细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来就可以构成特征描述器。
(3)提高性能:
把这些局部直方图在图像的更大的范围

本文详细介绍了HOG(Histogram of Oriented Gradient)特征,一种用于物体检测的特征描述子,特别是在行人检测中的应用。HOG通过计算图像局部区域的梯度方向直方图来构造特征描述器,包括细胞单元、直方图构建、对比度归一化等步骤,具有对光照变化和几何形变的良好不变性。文章还涵盖了HOG特征提取的实现过程,包括图像灰度化、梯度计算、直方图构建和归一化,以及C++(OpenCV)的算法实现。
订阅专栏 解锁全文
3352

被折叠的 条评论
为什么被折叠?



