多目标跟踪MOT MOTA关注的是总体的跟踪准确度,包括了检测和关联的效果。HOTA是一种更综合的评估指标,旨在同时优化检测和关联。IDF1则专注于评估跟踪系统在目标身份识别方面的性能。每个指标都有其适用的场景,选择哪个指标作为评价标准取决于具体应用的需求。
yolov8模型结构 YOLOv1:2015年Joseph Redmon和 Ali Farhadi等 人(华盛顿大学)YOLOv2:2016年Joseph Redmon和Ali Farhadi等人(华盛顿大学)YOLOv3:2018年Joseph Redmon和Ali Farhadi等人(华盛顿大学)YOLOv4:2020年Alexey Bochkovskiy和Chien-Yao Wang等人YOLOv5:2020年Ultralytics公司YOLOv6:2022年美团公司YOLOv7:2022年Alexey Boc
模型的参数量、计算量、延时等的关系 1.相同 FLOPs 的两个模型,它们的延时可能会差很多。例如某个模型需要256000个浮点参数定义,转化为bit 乘以32得8192000bit,再除8转化为Byte,1024KB,也就是1M,那么这个模型大小约为1M。2.计算量:FLOPs,Floating Point Operations,浮点运算次数,用来衡量模型计算复杂度。4.对于并行度而言,在相同的 FLOPs 下,具有高并行度的模型可能比另一个具有低并行度的模型快得多。2.在相同的 FLOPs 下,MAC 大的模型将具有更大的延时。
softmax和sigmoid的区别 公式:sigmoid(x)=11+e−xsigmoid(x) = \frac{1}{1 + e^{-x}}sigmoid(x)=1+e−x1函数曲线如下:导数公式:f(x)′=e−x(1+e−x)2=f(x)(1−f(x))f(x)\prime = \frac{ e^{-x}}{(1 + e^{-x})^2} = f(x)(1-f(x))f(x)′=(1+e−x)2e−x=f(x)(1−f(x))导数曲线如下:sigmoid代码:softmax公式:softmax(zi)=zi∑j=1nezjso
python调用C语言接口 在底层开发中,一般是使用C或者C++,但是有时候为了开发效率或者在写测试脚本的时候,会经常使用到python,所以这就涉及到一个问题,用C/C++写的底层库,怎么样直接被python来调用?python作为一门胶水语言,当然有办法来处理这个问题,python提供的方案就是ctypes库。
git使用方法 git使用方法git代码提交流程git开始gitlab添加秘钥创建本地仓库,并与远程仓库进行关联初始化本地仓库把代码推到远程仓库分支git代码提交流程git status:用于查看上次提交之后是否有对文件进行再次修改git add . :将当前目录下修改的所有代码从工作区添加到暂存区 . 代表当前目录git commit -m "message" :将暂存区内容添加到本地仓库中,并添加注释git checkout:表示核查工作区相对于版本库修改过的文件git diff:用来比较file文件的改
进制相关知识 进制相关知识进制对照表英文表示C++格式转换说明符进制对照表英文表示1、BIN:binary,二进制;2、OCT:octal,八进制;3、DEC:decimal,十进制;4、HEX:hexadecimal,十六进制。C++格式转换说明符 %a(%A) 浮点数、十六进制数字和p-(P-)记数法(C99) %c 字符 %d 有符号十进制整数 %f 浮点数(包括float和doulbe) %e(%E) 浮点数指数输
卡尔曼滤波算法应用 卡尔曼滤波算法应用Kalman算法简介Kalman算法应用场景Kalman滤波和贝叶斯滤波的关系Kalman滤波计算步骤Kalman计算公式和opencv对应关系Kalman算法简介1.卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。2.由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。3.卡尔曼滤波算法是对贝叶斯滤波的一种具体实现。4.卡尔曼滤波算法本质就是利用两个正态分布的融合仍是正态分
神经网络BN层batch normalization参数计算 神经网络BN层batch normalization参数计算作用计算过程训练阶段预测阶段作用BN层一般放在线性层或卷积层后面,激活函数前面,作用如下:1.加快网络收敛;因为每层的数据都转换为同一的分布,这样会加快训练速度。2.防止梯度爆炸和梯度消失;因为BN会使非线性变换函数的输入值落入对输入比较敏感的区域。3.防止过拟合,提升泛化能力。因为BN求均值和方差是基于同一个batch内的样本,使网络不会朝一个方向学习。计算过程为什么会有放缩系数γ\gammaγ和平移系数β\betaβ?因
图像滤波器算法总结及代码实现 图像滤波器算法总结概述均值滤波方框滤波高斯滤波中值滤波双边滤波概述线性滤波:方框滤波、均值滤波、高斯滤波非线性滤波: 最大最小值滤波、中值滤波、双边滤波高通滤波:去掉低频信号,留下高频信号。留下图像边界。低通滤波:去掉高频信号,留下低频信号。去噪,模糊图像。均值滤波一种低通线性滤波器,可以用来消除图像尖锐噪声,实现图像平滑、模糊。opencv代码:cv2.blur(img, (5, 5))python代码实现:def blur(img, size): mask = np.on
图像二值化代码实现 图像二值化代码实现固定阈值二值化Otsu 阈值二值化自适应阈值二值化固定阈值二值化opencv实现:ret, th = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)cv2.imshow('opencv', th)python实现:thresh = 127new_img = np.zeros((h,w),np.uint8)for i in range(h): for j in range(w): if gray[i,
SURF特征提取 SURF特征提取概述算法流程相比SIFT改进的方面代码实现概述SURF,全称Speeded-up Robust Feature,是SIFT算法的改进版和加速版,综合性能更优。由Herbert Bay发表在2006年的欧洲计算机视觉国际会议(Europen Conference on Computer Vision,ECCV)上。SURF算法利用了积分图、特征描述子降维提升了计算效率。算法流程SURF算法的基本流程和SIFT一样,但是在特征提取、尺度空间、特征点主方向和描述子方面会有不同。SURF
SIFT特征提取 SIFT特征提取概述算法原理及流程建立高斯差分金字塔极值点检测确定关键点的主方向构建关键点描述符概述SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。SIFT (Scale-invariant feature transform), 尺度不变特征转换,是一种图像局部特征提取算法,它通过在不同的尺度空间中寻找极值点(特征点,关键点)的精确定位和主方向,构建关键点描述符来提取特征。SIFT提取的关键点具有尺度不变性、旋转不变性,而且不会因光照、仿射变换和噪音等因素而干扰。SIFT所查找
FAST角点检测 FAST角点检测概述算法流程算法特点代码实现概述FAST,全称Features From Accelerated Segment Test,是一种快速的角点检测算法。该算法的核心思想是加上合适的阈值t来和邻域像素的灰度值进行比较来确定是否角点。算法流程1.在图像中选取一个像素P,其像素值为Ip;2.以该像素点为中心画一个半径为3像素的离散化圆,这个圆的边界上有16个像素;3.设置一个阈值t;4.如果在这个大小为16个像素的圆上有n个连续的像素值都比Ip+t大,或者都比Ip−t小,那么它就是一