增强学习Reinforcement Learning经典算法梳理3:TD方法

本文详细梳理了增强学习中的TD(时间差分)方法,包括TD与MC的不同,TD算法的原理,如SARSA和Q-Learning,以及Double Q-Learning。TD方法优势在于在线学习和广泛的应用范围,尽管存在估计偏差,但通过迭代可收敛。此外,文章探讨了这些算法如何基于Bellman方程进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 前言

在上一篇blog中,我们分析了蒙特卡洛方法,这个方法的一个特点就是需要运行完整个episode从而获得准确的result。但是往往很多场景下要运行完整个episode是很费时间的,因此,能不能还是沿着bellman方程的路子,估计一下result呢?并且,注意这里,依然model free。那么什么方法可以做到呢?就是TD(temporal-difference时间差分)方法。

有个名词注意一下:boostraping。所谓boostraping就是有没有通过估计的方法来引导计算。那么蒙特卡洛不使用boostraping,而TD使用boostraping。

接下来具体分析一下TD方法

2 TD与MC的不同

这里写图片描述

MC使用准确的return来更新value,而TD则使用Bellman方程中对value的估计方法来估计value,然后将估计值作为value的目标值进行更新。

也因此,估计的目标值的设定将衍生出各种TD下的算法。

那么TD方法的优势有什么呢?

  • 每一步都可以更新,这是显然,也就是online learning,学习快
  • 可以面对没有结果的场景,应用范围广

不足之处也是显而易见的,就是因为TD target是估计值,估计是有误差的,这就会导致更新得到value是有偏差的。很难做到无偏估计。但是以此同时,TD target是每一个step进行估计的,仅最近的动作对其有影响,而MC的result则受到整个时间片中动作的影响,因此TD target的方差variance会比较低,也就是波动性小。

还是放一下David Silver的总结吧:
这里写图片描述

那么David Silver的ppt中有三张图,很清楚的对比了MC,TD以及DP的不同:
这里写图片描述
这里写图片描述
这里写图片描述

从上面可以很清楚的看到三者的不同。DP就是理想化的情况,遍历所有。MC现实一点,TD最现实,但是TD也最不准确。但是没关系,反复迭代之下,还是可以收敛的。

整个增强学习算法也都在上面的范畴里:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值