关于Netflix Prize的总结

这篇博客总结了Netflix Prize竞赛中的一些关键算法和技术,包括全局效应的正常化、邻居模型、矩阵分解、回归、有限波尔兹曼机以及正则化和组合方法等。矩阵分解是获胜技术的核心部分,而正则化和模型组合也被证明对于减少过拟合和提高预测准确性至关重要。通过消除评分中的偏倚和考虑时间效应,模型能够更准确地预测用户评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PS:内容翻译自Quora


我试着在这里说些想法。矩阵分解技术和模型组合方法可能是与Netflix Prize有关最多被讨论的算法,但我们也使用了很多其他的洞见。

Normalization of Global Effects 全局效应的正常化

假设Alice给《盗梦空间》打4分。我们可认为这个评分由以下几部分组成:

  • 基准分(比如所有用户给电影打的分的均值是3.1分)
  •  Ali
著名的Netflix 智能推荐 百万美金大奖赛使用是数据集. 因为竞赛关闭, Netflix官网上已无法下载. Netflix provided a training data set of 100,480,507 ratings that 480,189 users gave to 17,770 movies. Each training rating is a quadruplet of the form . The user and movie fields are integer IDs, while grades are from 1 to 5 (integral) stars.[3] The qualifying data set contains over 2,817,131 triplets of the form , with grades known only to the jury. A participating team's algorithm must predict grades on the entire qualifying set, but they are only informed of the score for half of the data, the quiz set of 1,408,342 ratings. The other half is the test set of 1,408,789, and performance on this is used by the jury to determine potential prize winners. Only the judges know which ratings are in the quiz set, and which are in the test set—this arrangement is intended to make it difficult to hill climb on the test set. Submitted predictions are scored against the true grades in terms of root mean squared error (RMSE), and the goal is to reduce this error as much as possible. Note that while the actual grades are integers in the range 1 to 5, submitted predictions need not be. Netflix also identified a probe subset of 1,408,395 ratings within the training data set. The probe, quiz, and test data sets were chosen to have similar statistical properties. In summary, the data used in the Netflix Prize looks as follows: Training set (99,072,112 ratings not including the probe set, 100,480,507 including the probe set) Probe set (1,408,395 ratings) Qualifying set (2,817,131 ratings) consisting of: Test set (1,408,789 ratings), used to determine winners Quiz set (1,408,342 ratings), used to calculate leaderboard scores For each movie, title and year of release are provided in a separate dataset. No information at all is provided about users. In order to protect the privacy of customers, "some of the rating data for some customers in the training and qualifyin
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值