高斯消元法:
数学上,高斯消元法(或译:高斯消去法)(英语:Gaussian Elimination),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。(来自维基百科)
构造如下方程:
a[0][0]*X0 + a[0][1] *X1 + a[0][2]*X2+...........a[0][n-1]*Xn-1 = a[0][n]
a[1][0]*X0 + a[1][1] *X1 + a[1][2]*X2+...........a[1][n-1]*Xn-1 ) = a[1][n]
..................................................
..................................................
a[m-1][0]*X0 + a[m-1][1] *X1 + a[m-1][2]*X2+...........a[m-1][n-1]*Xn-1 = a[m-1][n]
一共有m个方程,有n个未知量(X0,X1,...XN-1),未知量为所求,a[0....m-1][n]为常数。
在一些ACM题目中关键点就是构造方程,在求解概率期望的时候经常用到,找到题目中的状态递推方程。
常用E[k]表示从k节点到达目标节点还需要的期望的步数,那么目标节点p, E[p]=0,很关键。
构造出方程组,带入模板。
整型高斯消元模板:
//高斯消元模板
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <cmath>
using namespace std;
const int maxn=105;
int equ,var; // 有equ个方程,var个变元。增广阵行数为equ, 分别为0到equ - 1,列数为var + 1,分别为0到var.
int a[maxn][maxn];
int x[maxn]; // 解集.
bool free_x[maxn]; // 判断是否是不确定的变元.
int free_num;
void Debug(void)
{
int i,j;
for(i=0;i<equ;i++)
{
for(j=0;j<var+1;j++)
{
cout<<a[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;
}
inline int gcd(int a, int b)
{
int t;
while (b!=0)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a, int b)
{
return a*b/gcd(a,b);
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
int Gauss(void)
{
int i,j,k;
int max_r; // 当前这列绝对值最大的行.
int col; // 当前处理的列.
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;
// 转换为阶梯阵.
col=0; // 当前处理的列.
for(k=0;k<equ&&col<var;k++,col++)
{ // 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+1;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
}
if(max_r!=k)
{ // 与第k行交换.
for(j=k;j<var+1;j++)
swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==0)
{ // 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--; continue;
}
for(i=k+1;i<equ;i++)
{ // 枚举要删去的行.
if (a[i][col]!=0)
{
LCM=lcm(abs(a[i][col]),abs(a[k][col]));
ta=LCM/abs(a[i][col]),tb=LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<0) tb=-tb; // 异号的情况是两个数相加.
for(j=col;j<var+1;j++)
{
a[i][j]=a[i][j]*ta-a[k][j]*tb;
}
}
}
}
//Debug();
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for(i=k;i<equ;i++)
{ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col]!=0)
return -1;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if(k<var)
{
// 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
for (i=k-1;i>=0;i--)
{
// 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
// 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
free_x_num=0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
for(j=0;j<var;j++)
{
if(a[i][j]!=0&&free_x[j])
free_x_num++,free_index = j;
}
if(free_x_num>1)
continue; // 无法求解出确定的变元.
// 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
temp=a[i][var];
for(j=0;j<var;j++)
{
if(a[i][j]!=0&&j!=free_index)
temp-=a[i][j]*x[j];
}
x[free_index]=temp/a[i][free_index]; // 求出该变元.
free_x[free_index]=0; // 该变元是确定的.
}
return var-k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i=var-1;i>=0;i--)
{
temp=a[i][var];
for(j=i+1;j<var;j++)
{
if(a[i][j]!=0)
temp-=a[i][j]*x[j];
}
if(temp%a[i][i]!=0)
return -2; // 说明有浮点数解,但无整数解.
x[i]=temp/a[i][i];
}
return 0;
}
int main(void)
{
int i, j;
while (scanf("%d %d",&equ,&var)!=EOF)
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
memset(free_x,1,sizeof(free_x)); // 一开始全是不确定的变元
for(i=0;i<equ;i++)//构造增广矩阵
for(j=0;j<var+1;j++)
scanf("%d",&a[i][j]);
// Debug();
free_num=Gauss();
if(free_num==-1) printf("无解!\n");
else if(free_num==-2) printf("有浮点数解,无整数解!\n");
else if(free_num>0)
{
printf("无穷多解! 自由变元个数为%d\n",free_num);
for(i=0;i<var;i++)
{
if(free_x[i]) printf("x%d 是不确定的\n",i+1);
else printf("x%d: %d\n",i+1,x[i]);
}
}
else
{
for(i=0;i<var;i++)
printf("x%d: %d\n",i+1,x[i]);
}
printf("\n");
}
return 0;
}
浮点数高斯消元模板:
新的,用下面这个:
const int maxn=1002;
const double eps=1e-12;
double a[maxn][maxn];
int equ,var;//equ个方程,var个变量
double x[maxn];//解集
bool free_x[maxn];
int n;
int sgn(double x)
{
return (x>eps)-(x<-eps);
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(0表示无解,1表示唯一解,大于1表示无穷解,并返回自由变元的个数)
int gauss()
{
equ=n,var=n;//多少个方程,多少个变量
int i,j,k;
int max_r; // 当前这列绝对值最大的行.
int col; // 当前处理的列.
double temp;
int free_x_num;
int free_index;
// 转换为阶梯阵.
col=0; // 当前处理的列.
memset(free_x,true,sizeof(free_x));
for(k=0;k<equ&&col<var;k++,col++)
{
max_r=k;
for(i=k+1;i<equ;i++)
{
if(sgn(fabs(a[i][col])-fabs(a[max_r][col]))>0)
max_r=i;
}
if(max_r!=k)
{ // 与第k行交换.
for(j=k;j<var+1;j++)
swap(a[k][j],a[max_r][j]);
}
if(sgn(a[k][col])==0)
{ // 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--; continue;
}
for(i=k+1;i<equ;i++)
{ // 枚举要删去的行.
if (sgn(a[i][col])!=0)
{
temp=a[i][col]/a[k][col];
for(j=col;j<var+1;j++)
{
a[i][j]=a[i][j]-a[k][j]*temp;
}
}
}
}
for(i=k;i<equ;i++)
{
if (sgn(a[i][col])!=0)
return 0;
}
if(k<var)
{
for(i=k-1;i>=0;i--)
{
free_x_num=0;
for(j=0;j<var;j++)
{
if (sgn(a[i][j])!=0&&free_x[j])
free_x_num++,free_index=j;
}
if(free_x_num>1) continue;
temp=a[i][var];
for(j=0;j<var;j++)
{
if(sgn(a[i][j])!=0&&j!=free_index)
temp-=a[i][j]*x[j];
}
x[free_index]=temp/a[i][free_index];
free_x[free_index]=0;
}
return var-k;
}
for (i=var-1;i>=0;i--)
{
temp=a[i][var];
for(j=i+1;j<var;j++)
{
if(sgn(a[i][j])!=0)
temp-=a[i][j]*x[j];
}
x[i]=temp/a[i][i];
}
return 1;
}
下面这个模板有些题目有问题......
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string.h>
#include <cmath>
#include <iomanip>
#include <algorithm>
using namespace std;
///浮点型高斯消元模板
const double eps=1e-12;
const int maxm=1000;///m个方程,n个变量
const int maxn=1000;
int m,n;
double a[maxm][maxn+1];///增广矩阵
bool free_x[maxn];///判断是否是不确定的变元
double x[maxn];///解集
int sign(double x)
{
return (x>eps)-(x<-eps);
}
/**返回值:
-1 无解
0 有且仅有一个解
>=1 有多个解,根据free_x判断哪些是不确定的解
*/
int Gauss()
{
int i,j;
int row,col,max_r;
m=n;///n个方程,n个变量的那种情况
for(row=0,col=0;row<m&&col<n;row++,col++)
{
max_r=row;
for(i=row+1;i<m;i++)///找到当前列所有行中的最大值(做除法时减小误差)
{
if(sign(fabs(a[i][col])-fabs(a[max_r][col]))>0)
max_r=i;
}
if(max_r!=row)
{
for(j=row;j<n+1;j++)
swap(a[max_r][j],a[row][j]);
}
if(sign(a[row][col])==0)///当前列row行以下全为0(包括row行)
{
row--;
continue;
}
for(i=row+1;i<m;i++)
{
if(sign(a[i][col])==0)
continue;
double tmp=a[i][col]/a[row][col];
for(j=col;j<n+1;j++)
a[i][j]-=a[row][j]*tmp;
}
}
for(i=row;i<m;i++)///col=n存在0...0,a的情况,无解
{
if(sign(a[i][col]))
return -1;
}
if(row<n)///存在0...0,0的情况,有多个解,自由变元个数为n-row个
{
for(i=row-1;i>=0;i--)
{
int free_num=0;///自由变元的个数
int free_index;///自由变元的序号
for(j=0;j<n;j++)
{
if(sign(a[i][j])!=0&&free_x[j])
free_num++,free_index=j;
}
if(free_num>1)
continue;///该行中的不确定的变元的个数超过1个,无法求解,它们仍然为不确定的变元
///只有一个不确定的变元free_index,可以求解出该变元,且该变元是确定的
double tmp=a[i][n];
for(j=0;j<n;j++)
{
if(sign(a[i][j])!=0&&j!=free_index)
tmp-=a[i][j]*x[j];
}
x[free_index]=tmp/a[i][free_index];
free_x[free_index]=false;
}
return n-row;
}
///有且仅有一个解,严格的上三角矩阵(n==m)
for(i=n-1;i>=0;i--)
{
double tmp=a[i][n];
for(j=i+1;j<n;j++)
if(sign(a[i][j])!=0)
tmp-=a[i][j]*x[j];
x[i]=tmp/a[i][i];
}
return 0;
}///模板结束
int t,xx;
int main()
{
cin>>t;
while(t--)
{
cin>>n>>xx;
memset(a,0,sizeof(a));
for(int i=0;i<n;i++)
{
if(i==xx)
{
a[i][i]=1;
a[i][n]=0;
continue;
}
a[i][i]=1;
a[i][n]=1;
a[i][(i-1+n)%n]=-0.5;
a[i][(i+1)%n]=-0.5;
}
Gauss();
cout<<setiosflags(ios::fixed)<<setprecision(4)<<x[0]<<endl;
}
return 0;
}
整型高斯消元的一个题目:http://blog.csdn.net/sr_19930829/article/details/38959149
浮点高斯消元的一个题目:http://blog.csdn.net/sr_19930829/article/details/41551101