POJ 1061 BZOJ 1477 Luogu P1516 青蛙的约会 (扩展欧几里得算法)

9 篇文章 0 订阅
4 篇文章 0 订阅

题目链接: (poj)http://poj.org/problem?id=1061
(bzoj)http://www.lydsy.com/JudgeOnline/problem.php?id=1477
(Luogu)https://www.luogu.org/problemnew/show/P1516
数据强度对比: 在以上三个OJ中,本题Luogu数据最强。使用一种错误代码在BZOJ与POJ均能AC,而Luogu无法AC.

题目大意:
求解方程

u+mxv+nx(modp) u + m x ≡ v + n x ( mod p )
注意这里的u,v,m,n,p分别对应题目中的x,y,n,m,L.

思路分析:
解同余方程?很经典的使用exgcd算法的问题。(简单一点的exgcd解同余方程的题目可参照luogu P1082 NOIP 2012 D2 T1 同余方程,题目链接https://www.luogu.org/problem/show?pid=1082)
一般来说,如果是形如 axc(modb) a x ≡ c ( mod b ) 的同余方程都可化为 ax+by=c a x + b y = c 的形式,用exgcd算法求解后 x x 的值即为原方程的解。
所以直接化一化式子即可:

u+mxv+nx(modp)

u+mxvnx0(modp) u + m x − v − n x ≡ 0 ( mod p )
(mn)xvu(modp) ( m − n ) x ≡ v − u ( mod p )
代入上面的公式,令 a=mn,c=vu,b=p a = m − n , c = v − u , b = p 可得答案即为不定方程
(mn)x+py=vu ( m − n ) x + p y = v − u
的所有解中x最小且为整数的解的x值.
注意讨论正数与负数的情况。现假设 m>n m > n .
如果 gcd(mn,p) gcd ( m − n , p ) 不整除 |vu| | v − u | (注意v不一定大于u), 则无解
否则直接exgcd即可。求出
(mn)x+py=gcd(mn,p) ( m − n ) x + p y = g c d ( m − n , p )
的一组解,乘以 vugcd(mn,p) v − u g c d ( m − n , p ) (注意不加绝对值)即可. 于是我们求出了特解。
如何求x>0且最小的解呢? 我们发现若 ax+by=c a x + b y = c 特解为 x=x0,y=y0 x = x 0 , y = y 0 则通解为 x=x0+bgcd(a,b)t,y=y0agcd(a,b)t x = x 0 + b g c d ( a , b ) t , y = y 0 − a g c d ( a , b ) t (t取任意整数)(一定注意不要忘记除以gcd!!!)因此 在数学上 bgcd(a,b) b g c d ( a , b ) 取模即可。
注意此处“在数学上” AmodB A mod B 是指 AX(modB) A ≡ X ( mod B ) 0X<b 0 ≤ X < b 的唯一的X, 但是在C++语言编程中不能这样取模,C++中负数取模的含义是

(-A) % B == -(A % B) (A>0,B>0)

例如

(-6) % 5 = -1
(-7) % 4 = -3
(-18) % 9 = 0

其返回值 x x 满足B<x0
因此在数学上负整数 A − A 对正整数 B B 取模,就相当于在C++语言中的

(((-A)%B)+B)%B

(注: 以上关于取模的分析过程均采用大写,关于不定方程的分析过程均采用小写)
代入A=x0,B=bgcd(a,b)即可,再将a,b分别换成原方程中的 mn m − n p p <script id="MathJax-Element-28" type="math/tex">p</script>,直接畅通无阻地使用exgcd即可。

部分易错点
1. 很容易炸long long, 一定注意。

代码实现
(三个OJ均AC)

#include<cstdio>
#include<algorithm>
using namespace std;

long long u,v,m,n,p;

long long exgcd(long long a,long long b,long long &x,long long &y)
{
    if(b==0ll) {x = 1ll; y = 0ll; return a;}
    long long ret = exgcd(b,a%b,y,x); y -= a/b*x;
    return ret;
}

long long gcd(long long a,long long b)
{
    if(b==0ll) return a;
    else return gcd(b,a%b);
}

long long absl(long long x)
{
    return x>0ll ? x : -x;
}

void swap_ll(long long &x,long long &y)
{
    long long c = x; x = y; y = c;
}

int main()
{
    scanf("%lld%lld%lld%lld%lld",&u,&v,&m,&n,&p);
    long long x,y;
    if(m==n) {puts("Impossible"); return 0;}
    if(m-n<0) {swap_ll(u,v); swap_ll(m,n);}
    if(absl(v-u)%gcd(m-n,p)!=0) {puts("Impossible"); return 0;}
    exgcd(m-n,p,x,y);
    long long s = x*((v-u)/gcd(m-n,p)); //此处一定是用(v-u)/gcd(m-n,p),x不一定被gcd整除
    long long g = p/gcd(m-n,p); //把g直接当成了p使用,在BZOJ和POJ居然AC,所幸Luogu WA
    s = ((s%g)+g)%g;
    printf("%lld\n",s);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值