计算机视觉与卷积神经网络

2017年第一篇博文,为自己加油!!!

人工神经网络到卷积神经网络

如下图所示一个典型的人工神经网络:

这里写图片描述

关于更多的人工神经网络请参考:从感知机到人工神经网络

人工神经网络同样能应用到计算机视觉中,但是对于一副图像来说,假如其大小为227*227*3,即使对其做采样到32*32*3其输入的维度依然很高。如果用人工神经网络来对图片进行分类的话,它将面临这主要的两个问题:

  1. w参数的量级将会非常大,会消耗大量的计算资源
  2. 将会引起过拟合

怎样解决上述的问题呢,答案也就是我们的卷积神经网络了。

卷积神经网络概述

卷积神经网络的层次结构

这里写图片描述
来源:七月在线

从上图中可以看到,其主要的层次结构有几下的几种:

1. 数据输入层/ Input layer
2. 卷积计算层/ CONV layer
3. ReLU激励层 / ReLU layer
4. 池化层 / Pooling layer,也成为下采样层
5. 全连接层 / FC layer
6. Batch Normalization层(可能有)

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值