2017年第一篇博文,为自己加油!!!
人工神经网络到卷积神经网络
如下图所示一个典型的人工神经网络:
关于更多的人工神经网络请参考:从感知机到人工神经网络
人工神经网络同样能应用到计算机视觉中,但是对于一副图像来说,假如其大小为227*227*3
,即使对其做采样到32*32*3
其输入的维度依然很高。如果用人工神经网络来对图片进行分类的话,它将面临这主要的两个问题:
- w参数的量级将会非常大,会消耗大量的计算资源
- 将会引起过拟合
怎样解决上述的问题呢,答案也就是我们的卷积神经网络了。
卷积神经网络概述
卷积神经网络的层次结构
来源:七月在线
从上图中可以看到,其主要的层次结构有几下的几种:
1. 数据输入层/ Input layer
2. 卷积计算层/ CONV layer
3. ReLU激励层 / ReLU layer
4. 池化层 / Pooling layer,也成为下采样层
5. 全连接层 / FC layer
6. Batch Normalization层(可能有)