【算法导论】有向图的深度优先搜索遍历

        在前面的文章中,我已经讨论了无向图的遍历,现在发现在有向图中,可能会发生无法遍历到所有节点的情况。因此在经历一次深度优先搜索遍历后,如果还存在未被搜索到的节点,则需要再从新的节点开始进行深度优先搜索遍历,直到访问完所有节点。

以下面的有向图为例:


        如果从a开始进行深度优先搜索遍历,则会得到  a b c d h g f 后结束,因此我们还要 从未访问到的节点e进行第二次深度优先搜索遍历得到e.在前面的深度优先搜索的基础上,有向图的深度优先搜索程序实现如下:

#include<stdio.h>
#include<stdlib.h>
#define N 8 //顶点数

typedef struct node
{
	char vexs[N];//顶点数组
	int color[N];
	int arcs[N][N];//邻接矩阵
//	struct node *p;
}graph;


void DFS_direction(graph g,int i,int visited[N])
{
	printf("%c\n",g.vexs[i]);
	visited[i]=1;
	for(int j=0;j<N;j++)
		if(g.arcs[i][j]==1&&visited[j]==0)
			DFS_direction(g,j,visited);
}


void main()
{
	graph g;
	int v=0;
	int visited[N]={0};
	int visited1[N]={0};
	char vertex[N]={'A','B','C','D','E','F','G','H'};
	int matrix[N][N]={{0,1,0,0,0,0,0,0},
					  {0,0,1,0,0,1,0,0},
					  {0,0,0,1,0,0,1,0},
					  {0,0,1,0,0,0,0,1},
					  {1,0,0,0,0,1,0,0},
					  {0,0,0,0,0,0,1,0},
					  {0,0,0,0,0,1,0,1},
					  {0,0,0,0,0,0,0,1}};
	for(int i=0;i<N;i++)
	{
		g.vexs[i]=vertex[i];
		for(int j=0;j<N;j++)
			g.arcs[i][j]=matrix[i][j];
	}
	//printf("%d",g.arcs[7][5]);
	int d[N]={0};
	int f[N]={0};
	int num=0;
	//printf("图按照邻接矩阵存储时的深度优先搜索遍历:\n");
	while(num!=N)//当从某个节点无法一次搜索完所有节点时,从一个没有被访问过的节点开始
	{
		for(int j=0;j<N;j++)
			if(visited[j]==0)
				DFS_direction(g,j,visited);
		
		for(int k=0;k<N;k++)
			num=num+visited[k];//查看是否所有节点遍历到	
		
	}
	

}

注:如果程序出错,可能是使用的开发平台版本不同,请点击如下链接: 解释说明


原文:http://blog.csdn.net/tengweitw/article/details/17336271

作者:nineheadedbird


/* * (有向)深度优先遍历算法模板 */ package dsa; public abstract class DFS extends GraphTraverse { //变量 protected static int clock = 0;//遍历过程中使用的计时钟 //构造方法 public DFS(Graph g) { super(g); } //深度优先遍历算法 protected Object traverse(Vertex v, Object info) {//从顶点v出发,做深度优先查找 if (UNDISCOVERED != v.getStatus()) return null;//跳过已访问过的顶点(针对非连通) v.setDStamp(clock++); v.setStatus(DISCOVERED); visit(v, info);//访问当前顶点 for (Iterator it = v.outEdges(); it.hasNext();) {//检查与顶点v Edge e = (Edge)it.getNext();//通过边e = (v, u) Vertex u = (Vertex)e.getVPosInV(1).getElem();//相联的每一顶点u switch (u.getStatus()) {//根据u当前的不同状态,分别做相应处理 case UNDISCOVERED ://若u尚未被发现,则 e.setType(TREE);//e被归类为“树边” traverse(u, info);//从u出发,继续做深度优先查找 break; case DISCOVERED ://若u已经被发现,但对其访问尚未结束,则 e.setType(BACKWARD);//将e归类为“后向跨边” break; default ://VISITED,即对u的访问已经结束 if (u.getDStamp() < v.getDStamp())//若相对于v,u被发现得更早,则 e.setType(CROSS);//将e归类为“横跨边” else//否则 e.setType(FORWARD);//将e归类为“前向跨边” break; } }//至此,v的所有邻居都已访问结束,故 v.setFStamp(clock++); v.setStatus(VISITED);//将v标记为VISITED return null;//然后回溯 } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值