(带讲解)bzoj 4830 抛硬币 组合式推导+拓展lucas

卡常!!!

题意:有两个人,第一个人要扔a次硬币,第二个人扔b次硬币(a>b),如果第一个人的正面朝上比b多则a获胜,求a获胜的话有多少种方案。

要求a-b的范围是1e5,但是a和b都很大,所以复杂度要和a-b有关。

首先可以列出组合数公式

i=1aj=0i1(ai)(bj)

对这个式子进行推导,换一下枚举顺序,其实可以换到很多枚举顺序上,多试试就好了,最终枚举a比b多多少,再枚举b是多少,就可以得到

i=1aj=0ai(ai+j)(bj)=i=1aj=0ai(ai+j)(bbj)

观察后面的式子,发现组合数下面的加起来是一个定值,等于b+i,所以可以用范德蒙德卷积化简。

后面的就相当于a+b个中选b+i个的方案数。

为什么呢?

范德蒙德卷积实质上是对选择的对象分成两部分,最后对方案求和,一个和式是卷积的形式,只要当枚举的变量在两个端点的时候,选择的数都在同一个组合数里面。

比如当j是0的时候,后边的式子是(b,b),当j是a-i时,前面的是(a,a)所以得到新的式子:

i=b+1a+b(a+bi)

惊喜地发现,这个式子和a-b有关!

但是实际上这个常数还是太大,想办法卡一下常数。

可以发现这个组合数的区间是从b+1到a+b,我们想要把组合数转化为别的形式,最好的就是转化为 2x 的形式,为了这样做,我们把这个式子拆成两部分

i=b+1a+b2(a+bi)+i=a+b2a+b(a+bi)

于是后面的部分由于组合数的对称性就等于 2(a+b1)

但是有一点不对,如果a+b是偶数的话为了去重要减去

12a+ba+b2

然后剩下的部分暴力算,要用到组合数对10的几次方数取模。

使用拓展lucas,把10的k次方分解成2的k次方乘5的k次方,用CRT合并得到答案。

有个注意事项,要计算那个除以2的组合数,如果是计算2的k次方的时候把提出的指数减1,计算模5的k次方的时候要乘2的逆元。

卡常(不卡过不了):
1.对每一个数都计算模1e9的答案,最后模 10k ,这样可以只计算一边阶乘。

2.在模 29 的意义下,如果这个数中提出的2的指数大于9,这个数取模后一定为0,就不需要计算了,5同理。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<set>
#define ll long long
#define pr(x) cerr<<#x<<"="<<x<<endl
#define inf 10000000000ll
using namespace std;
ll fac2[50000],tmp,fac5[5000000],n,k,md,i,tot,pc2,pc5,a,b,ans;
void print(ll x)
{
    ll tot=0;
    ll t=x;
    while (t) tot++,t/=10;
    for (i=1;i<=k-tot;i++) printf("0");
    if (x) printf("%lld\n",x);
    else printf("\n");
}
ll qpow(ll x,ll y,ll p)
{
    ll ret=1;
    for (;y;y>>=1ll,x=x*x%p)
    if (y&1ll) ret=ret*x%p;
    return ret;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
    if (b==0) 
    {
        x=1;
        y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    ll t=x;
    x=y;
    y=t-(a/b)*y;
}
ll inv(ll a,ll b)
{
    ll x,y;
    exgcd(a,b,x,y);
    x=(x%b+b)%b;
    return x;
}
ll calc(ll n,ll p,ll pc)
{
    if (p==2)
    {
        if (n<p) return fac2[n];
        return fac2[n%pc]*qpow(fac2[pc-1],n/pc,pc)%pc*calc(n/p,p,pc)%pc;    
    }   
    else
    {
        if (n<p) return fac5[n];
        return fac5[n%pc]*qpow(fac5[pc-1],n/pc,pc)%pc*calc(n/p,p,pc)%pc;    
    }   
}
ll cou(ll n,ll p)
{
    ll ret=0;
    while (n)
    {
        ret+=n/p;
        n/=p;
    }
    return ret;
}
ll lucas(ll n,ll m,ll div2)
{
    ll ret=0;
    {
        ll a=0;
        ll p=2,pc=pc2;
        tot=cou(n,p)-cou(m,p)-cou(n-m,p);
        if (div2) tot--;
        if (tot<=9)
        {
            a=calc(n,p,pc);
            a=a*inv(calc(m,p,pc),pc)%pc*inv(calc(n-m,p,pc),pc)%pc;
            a=a*qpow(p,tot,pc)%pc;
            ret+=a*pc5%md*inv(pc5,pc2)%md;
        }
    }
    {
        ll a=0;
        ll p=5,pc=pc5;
        tot=cou(n,p)-cou(m,p)-cou(n-m,p);
        if (tot<=9)
        {
            a=calc(n,p,pc);
            a=a*inv(calc(m,p,pc),pc)%pc*inv(calc(n-m,p,pc),pc)%pc;
            if (div2) a=a*inv(2,pc)%pc;
            a=a*qpow(p,tot,pc)%pc;
            ret+=a*pc2%md*inv(pc2,pc5)%md;
        }
    }
    return ret%md;
}
int main()
{
    //freopen("a.in","r",stdin);
    //freopen("a.out","w",stdout);
    fac2[0]=1;
    fac5[0]=1;
    pc2=qpow(2,9,inf);
    pc5=qpow(5,9,inf);
    md=qpow(10,9,inf);
    for (i=1;i<=pc2;i++) fac2[i]=fac2[i-1]*(i%2?i:1)%pc2;
    for (i=1;i<=pc5;i++) fac5[i]=fac5[i-1]*(i%5?i:1)%pc5;
    while (scanf("%lld %lld %lld",&a,&b,&k)!=EOF)
    {
        ans=0;
        tot=0;
        ans=qpow(2,a+b-1,md);
        if ((a+b)%2==0) ans=(md+ans-lucas(a+b,(a+b)/2,1))%md;
        for (i=b+1;i<=(a+b)/2;i++)
        ans=(ans+lucas(a+b,i,0))%md;
        tmp=qpow(10,k,inf);
        print(ans%tmp);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值