一、群
(一)定义
一种包含一些元素和相关元素的一个运算符的结构
(二)基本性质
1、封闭性:∀x,y∈S,x⊕y∈S(x,y可以相等)
2、结合律:∀a,b,c∈S,a⊕b⊕c=a⊕(b⊕c)(a,b,c可以相等)
3、单位元:∃e∈S,∀x∈S,e⊕x=x⊕e=x(x,e可以相等,我们往往用e代表单位元,也叫幺元)
4、逆元:∀x∈S,∃y∈S,x⊕y=y⊕x=e(x,y可以相等,我们称y为x的逆元,记作x−1)
若s⊕x=e,则s是x的左逆元,若x⊕t=e,则t是x的右逆元,所以逆元唯一。
需要注意的是,群内元素不一定满足交换律和分配律。
(部分转自http://blog.csdn.net/ta201314/article/details/51050846)
(三)一些证明
首先,x^-1中x不一定是数,可以是任意元素,x^-1指x在某运算下的逆元。
例如:
在(实数,+)这个群中,e=0 x^-1=-x
在(实数,*)中,e=1,x^-1=1/x
1.若x存在左逆元,则右逆元一定和左逆元大小相等,即只有一个逆元。
证明:
2.逆元的存在与消去律等价
逆元->消去律:只需在等式两边⊕a−1即可。
消去律->逆元:对于a,若∀x,y∈S,ax=ay<=>x=y,则令S′=ax|x∈S,因为ax互不相同,所以|S′|=|S|,又因为封闭性,所以S′⊂S,即S′=S,那么必然∃e∈S′,即∃x∈S,ax=e,于是我们就找到了a的逆元。(转自TA)
(四)拉格朗日定理
内容:
若(s,+)有子群(s’,+),则|s|是|s’|的倍数。
首先引入陪集的概念:对于集合s,左陪集Sa={a+x|x∈S},右陪集同理。
证明: