群论&polya定理笔记

一、群

(一)定义

一种包含一些元素和相关元素的一个运算符的结构

(二)基本性质

1、封闭性:∀x,y∈S,x⊕y∈S(x,y可以相等)

2、结合律:∀a,b,c∈S,a⊕b⊕c=a⊕(b⊕c)(a,b,c可以相等)

3、单位元:∃e∈S,∀x∈S,e⊕x=x⊕e=x(x,e可以相等,我们往往用e代表单位元,也叫幺元)

4、逆元:∀x∈S,∃y∈S,x⊕y=y⊕x=e(x,y可以相等,我们称y为x的逆元,记作x−1)

若s⊕x=e,则s是x的左逆元,若x⊕t=e,则t是x的右逆元,所以逆元唯一。

需要注意的是,群内元素不一定满足交换律和分配律。

(部分转自http://blog.csdn.net/ta201314/article/details/51050846

(三)一些证明

首先,x^-1中x不一定是数,可以是任意元素,x^-1指x在某运算下的逆元。

例如:

在(实数,+)这个群中,e=0 x^-1=-x

在(实数,*)中,e=1,x^-1=1/x

1.若x存在左逆元,则右逆元一定和左逆元大小相等,即只有一个逆元。

证明:

sx=e

xt=e

s=se=sxt=et=t

2.逆元的存在与消去律等价

逆元->消去律:只需在等式两边⊕a−1即可。

消去律->逆元:对于a,若∀x,y∈S,ax=ay<=>x=y,则令S′=ax|x∈S,因为ax互不相同,所以|S′|=|S|,又因为封闭性,所以S′⊂S,即S′=S,那么必然∃e∈S′,即∃x∈S,ax=e,于是我们就找到了a的逆元。(转自TA)

(四)拉格朗日定理

内容:

若(s,+)有子群(s’,+),则|s|是|s’|的倍数。

首先引入陪集的概念:对于集合s,左陪集Sa={a+x|x∈S},右陪集同理。

证明:

x,yS

xa=y
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值