SVM——(五)线性不可分之核函数

本文探讨了支持向量机(SVM)在面对线性不可分数据时,如何通过映射到高维空间并利用核函数解决分类问题。介绍了将低维特征映射到高维空间的概念,以及核函数的有效性和一些常见的核函数类型,如线性、多项式、高斯和拉普拉斯核等。
摘要由CSDN通过智能技术生成

本文主要包含以下内容:

1.从线性不可分谈起
2.将低维特征映射到高维空间
3.核函数的有效性
4.常用核函数

1.从线性不可分谈起

我们之前谈到的情况都是线性可分的,也就是说总能找到一个超平面将数据集分开。 但现实总是那么不完美,大多情况都是线性不可分的。如下图所示:

这里写图片描述

我们应该怎么才能将其分开呢?有人说用曲线能将其分开;对,曲线确实能将数据集分开,但如果用曲线,那还能叫支持向量机么。那到底又该怎么弄?你说!不慌,请看下图:

这里写图片描述

看到没,现在我们已经用一个平面完美的将其分开了。不过此时可能传来这么一个声音“我瞎啊,这是刚刚的数据集么?明明刚刚在二维平面,现在却跑到三维平面去了,靠谱点好不?”对,数据集确确实实不是同一个数据集,但是:每个数据集所对应的类别依旧和原来的一样,只不过现在我给它穿上了一件“马甲”。也就是说,假如 x i x^i xi是正样本,那么它穿上马甲变成 x ^ i \hat{x}{^i} x^i之后仍然属于正样本。正如那句:你大妈 (数据集)已经不是原来的(数据集)大妈了,但(每个样本点所对应的类别)你大爷仍旧(和先前一样) 是你大爷。

一句话:将低维数据集映射到高维空间中去,这样就一定能找到一个平面将其分开。

2.将低维特征映射到高维空间

所谓将低维特征映射到高维空间指的是用一定的映射关系,将其映射到更高维度的空间。比如通过函数 ϕ ( x ) \phi(x) ϕ(x)将一维 x x x映射到三维 x , x 2 , x 3 x,x^2,x^3 x,x2,x3

相信大家应该还记得SVM求解中,最小化目标函数后的结果吧:
w = ∑ i = 1 m α i y ( i ) x ( i ) (2.1) w=\sum_{i=1}^m\alpha_iy^{(i)}x^{(i)}\tag{2.1} w=i=1mαiy(i)x(i)(2.1)
假设 α i \alpha_i αi b b b已知;此时若对一个新的样本点进行预测,则其预测结果为:

y ( i ) = w T x + b = ∑ i = 1 m α i y ( i ) x ( i ) x + b = ∑ i = 1 m α i y ( i ) ⟨ x ( i ) , x ⟩ + b (2.2) \begin{aligned} y^{(i)}&=w^Tx+b\\[1ex] &=\sum_{i=1}^m\alpha_iy^{(i)}x^{(i)}x+b\\[1ex] &=\sum_{i=1}^m\alpha_iy^{(i)}\langle x^{(i)},x\rangle+b\tag{2.2} \end{aligned} y(i)=wTx+b=i=1mαiy(i)x(i)x+b=i=1mαiy(i)x(i),x+b(2.2)

其中 x ( i ) x^{(i)} x(i)表示训练集中的样本点(其实只是支持向量), x x x测试集的样本点; ⟨ a , b ⟩ \langle a,b\rangle a,b表示 a , b a,b a,b之间的点积(数量积)。

按照我们上面提到的通过函数 ϕ ( x ) \phi(x) ϕ(x),将低维映射到高维的思想,那么此时只需要将之前的 x x x,全部替换成 ϕ ( x ) \phi(x) ϕ(x)即可:
y ( i ) = ∑ i = 1 m α i y ( i ) ⟨ x ( i ) , x ⟩ + b = ∑ i = 1 m α i y ( i ) ⟨ ϕ ( x ) , ϕ ( z ) ⟩ + b (2.3) \begin{aligned} y^{(i)}&=\sum_{i=1}^m\alpha_iy^{(i)}\langle x^{(i)},x\rangle+b\\[1ex] &=\sum_{i=1}^m\alpha_iy^{(i)}\langle \phi(x),\phi(z)\rangle+b\tag{2.3} \end{aligned} y(i)=i=1mαiy(i)x(i),x+b=i=1mαiy(i)ϕ(x),ϕ(z)+b(2.3)

其中 ϕ ( x ) \phi(x) ϕ(x)表示训练集映射之后的结果, ϕ ( z ) 表 示 测 试 集 映 射 之 后 的 结 果 \phi(z)表示测试集映射之后的结果 ϕ(z),用不同字母只是为了区分。

但是这样一来虽然解决了线性不可分的困难,但是又出现了一个新的问题“维度爆炸”,如下:

现有数据集 χ \chi χ,其样本点 x i x^i xi有3个维度,分别为 x 1 i , x 2 i , x 3 i x^i_1,x^i_2,x^i_3 x1i,x2i,x3i(下面简写为 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3),现通过函数 ϕ ( x ) \phi(x) ϕ(x)将其映射到某个9维空间中,其分别为( x 1 x 1 , x 1 x 2 , x 1 x 3 , x 2 x 1 , x 2 x 2 , x 2 x 3 , x 3 x 1 , x 3 x 2 , x 3 x 3 x_1x_1,x_1x_2,x_1x_3,x_2x_1,x_2x_2,x_2x_3,x_3x_1,x_3x_2,x_3x_3 x1x1,x1x2,x1x3,x2x1,x2x2,x2x3,x3x1,x3x2,x3x3)(至于为啥这样映射,往下看你就知道了)。如果此时进行预测则先要进行计算 ⟨ ϕ ( x ) , ϕ ( z ) ⟩ \langle \phi(x),\phi(z)\rangle ϕ(x),ϕ(z):
ϕ ( x ) = ( x 1 x 1 , x 1 x 2 , x 1 x 3 , x 2 x 1 , x 2 x 2 , x 2 x 3 , x 3 x 1 , x 3 x 2 , x 3 x 3 ) T ϕ ( z ) = ( z 1 z 1 , z 1 z 2 , z 1 z 3 , z 2 z 1 , z 2 z 2 , z 2 z 3 , z 3 z 1 , z 3 z 2 ,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值