我们知道,SVM相对感知机而言,它可以解决线性不可分的问题,那么它是怎么解决的呢?它的解决思想很简单,就是对原始数据的维度变换,一般是扩维变换,使得原样本空间中的样本点线性不可分,但是在变维之后的空间中样本点是线性可分的,然后再变换后的高维空间中进行分类。
线性可分时:
求的最终结果:
其中表示任选的一个支持向量
当然这是线性可分的情况,那么如果问题本身是线性不可分的情况呢,那就是先扩维后再计算,计算形式是一样的:
其中
表示原来的样本扩维
我们知道,SVM相对感知机而言,它可以解决线性不可分的问题,那么它是怎么解决的呢?它的解决思想很简单,就是对原始数据的维度变换,一般是扩维变换,使得原样本空间中的样本点线性不可分,但是在变维之后的空间中样本点是线性可分的,然后再变换后的高维空间中进行分类。
线性可分时:
求的最终结果:
其中表示任选的一个支持向量
当然这是线性可分的情况,那么如果问题本身是线性不可分的情况呢,那就是先扩维后再计算,计算形式是一样的:
其中
表示原来的样本扩维