数论常用内容——高斯消元

本文详细介绍了高斯消元法在解决线性方程组中的应用,包括如何通过增广矩阵进行初等行变换,转换为行阶梯阵,以及如何利用高斯消元法求解矩阵的逆和计算矩阵的秩。此外,还提供了高斯消元法的编程思路和代码实现,涵盖了整数、浮点数以及0-1高斯消元的特殊情况。
摘要由CSDN通过智能技术生成

高斯消元法

数学上,高斯消元法,是线性代数中的一个算法,可用来为线性方程组求解

高斯消元法求解线性方程组时,首先需要根据方程,列出增广矩阵。然后再利用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解

高斯消元法的应用

1、找出可逆矩阵的逆矩阵

设A为一个N*N的可逆矩阵,将一个N*N单位矩阵I放在A的右边,形成一个N*2N的分块矩阵 B = [A,I] 。经过高斯消元法的计算程序后,矩阵B的左边原来A的位置会变成一个单位矩阵I ,而逆矩阵A ^(-1) 会出现在原来I的位置。

注:假如高斯消元法不能将A化为三角形的格式,那就代表A 是一个不可逆的矩阵。

2、算出矩阵的秩

将增广矩阵进行高斯消元变换,统计非零行行数(即最后一列的非零数字的个数),即为该矩阵的秩

高斯消元的编程思路及代码实现

先来介绍思路:

  1. 把方程组转换成增广矩阵。

  2. 利用初等行变换来把增广矩阵转换成行阶梯阵:
    枚举k从0到equ – 1,当前处理的列为col(初始为0) ,每次找第k行以下(包括第k行),col列中元素绝对值最大的列与第k行交换。如果col列中的元素全为0,那么则处理col + 1列,k不变。

  3. 转换为行阶梯阵,判断解的情况:
    ① 无解:当方程中出现(0, 0, …, 0, a)的形式,且a != 0时,说明是无解的。
    ② 唯一解:条件是k = equ,即行阶梯阵形成了严格的上三角阵。利用回代逐一求出解集。

下面放出代码

首先是对于整数的高斯消元

代码中有详细注释,对于上面思路理解不深刻的可以看一下代码注释

const int MAXN=50;

int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元

void Debug(void){
    int i, j;
    for (i = 0; i < equ; i++)
    {
        for (j = 0; j < var + 1; j++)
        {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}

inline int gcd(int a,int b){
    int t;
    while(b!=0){
        t=b;
        b=a%b;
        a=t;
    }
    return a;
}

inline int lcm(int a,int b){
    return a/gcd(a,b)*b;//先除后乘防溢出
}

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var){
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for(int i=0;i<=var;i++){
        x[i]=
高斯消元法是解线性方程组的经典方法,但当系数矩阵A的条件数很大时,会导致误差放大,解的精度下降。而高斯消元的迭代改善法,是通过不断迭代来逐步逼近精确解,从而提高解的精度。 高斯消元的迭代改善法包括以下步骤: 1. 对于线性方程组Ax = b,将系数矩阵A分解为下三角矩阵L和上三角矩阵U,即 A = LU。 2. 假设初始迭代结果为x0,将Ax0 = b转化为 Lx = b - Ux0,即 x = L^(-1)(b-Ux0)。 3. 通过不断迭代,逐步逼近精确解。假设第k次迭代的结果为xk,则有 x(k+1) = L^(-1)(b-Uxk)。 4. 计算每次迭代的误差,如果满足精度要求,即可停止迭代。 以下是高斯消元的迭代改善法的C++代码实现: ```cpp #include <iostream> #include <cmath> using namespace std; const int N = 3; // 矩阵大小 const double eps = 1e-6; // 精度要求 void GaussSeidel(double a[][N+1], double x[]) { double t[N]; // 保存每次迭代的结果 double L[N][N] = {0}; // 下三角矩阵 double U[N][N] = {0}; // 上三角矩阵 for (int i = 0; i < N; i++) { L[i][i] = 1; } for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (i <= j) { double tmp = 0; for (int k = 0; k < i; k++) { tmp += L[i][k] * U[k][j]; } U[i][j] = a[i][j] - tmp; } else { double tmp = 0; for (int k = 0; k < j; k++) { tmp += L[i][k] * U[k][j]; } L[i][j] = (a[i][j] - tmp) / U[j][j]; } } } int cnt = 0; // 迭代次数计数器 while (true) { cnt++; for (int i = 0; i < N; i++) { double tmp = a[i][N]; for (int j = 0; j < N; j++) { if (j <= i) { tmp -= L[i][j] * t[j]; } else { tmp -= U[i][j] * x[j]; } } t[i] = tmp / L[i][i]; // 更新迭代结果 } double maxdiff = 0; // 计算本次迭代与上一次迭代之间的最大差值 for (int i = 0; i < N; i++) { if (fabs(t[i] - x[i]) > maxdiff) { maxdiff = fabs(t[i] - x[i]); } x[i] = t[i]; // 更新x数组 } if (maxdiff < eps) { // 精度要求满足,退出迭代 break; } } cout << "迭代次数:" << cnt << endl; } int main() { double a[N][N+1] = {{1, 1, 1, 1.5}, {1, 1.0001, 1.0002, 2}, {1, 1.0002, 1.0004, 3}}; double x[N] = {0}; // 初始迭代结果 GaussSeidel(a, x); for (int i = 0; i < N; i++) { cout << "x[" << i << "] = " << x[i] << endl; } return 0; } ``` 在代码,先通过高斯消元法计算出系数矩阵的下三角矩阵L和上三角矩阵U,然后使用迭代法逐步逼近精确解。在每次迭代,都计算本次迭代与上一次迭代之间的最大差值,如果满足精度要求,则退出迭代。 以上代码仅供参考,具体实现可能需要根据实际情况进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值