pytorch + visdom 处理简单分类问题

环境

系统 : win 10
显卡:gtx965m
cpu :i7-6700HQ
python 3.61
pytorch 0.3

包引用

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import visdom
import time
from torch import nn,optim

数据准备

use_gpu = True
ones = np.ones((500,2))
x1 = torch.normal(6*torch.from_numpy(ones),2)
y1 = torch.zeros(500) 
x2 = torch.normal(6*torch.from_numpy(ones*[-1,1]),2)
y2 = y1 +1
x3 = torch.normal(-6*torch.from_numpy(ones),2)
y3 = y1 +2
x4 = torch.normal(6*torch.from_numpy(ones*[1,-1]),2)
y4 = y1 +3 

x = torch.cat((x1, x2, x3 ,x4), 0).float()
y = torch.cat((y1, y2, y3, y4), ).long()    

可视化如下看一下:
这里写图片描述

visdom可视化准备

先建立需要观察的windows

viz = visdom.Visdom()
colors = np.random.randint(0,255,(4,3)) #颜色随机
#线图用来观察loss 和 accuracy
line = viz.line(X=np.arange(1,10,1), Y=np.arange(1,10,1))
#散点图用来观察分类变化
scatter = viz.scatter(
    X=x,
    Y=y+1, 
    opts=dict(
        markercolor = colors,
        marksize = 5,
        legend=["0","1","2","3"]),)
#text 窗口用来显示loss 、accuracy 、时间
text = viz.text("FOR TEST")
#散点图做对比
viz.scatter(
    X=x,
    Y=y+1, 
    opts=dict(
        markercolor = colors,
        marksize = 5,
        legend=["0","1","2","3"]
    ),
)

效果如下:

这里写图片描述

逻辑回归处理

输入2,输出4

logstic = nn.Sequential(
    nn.Linear(2,4)
)

gpu还是cpu选择:

if use_gpu:
    gpu_status = torch.cuda.is_available()
    if gpu_status:
        logstic = logstic.cuda()
        # net = net.cuda()
        print("###############使用gpu##############")
    else : print("###############使用cpu##############")
else:
    gpu_status = False
    print("###############使用cpu##############")

优化器和loss函数:

loss_f = nn.CrossEntropyLoss()
optimizer_l = optim.SGD(logstic.parameters(), lr=0.001)

训练2000次:

start_time = time.time()
time_point, loss_point, accuracy_point = [], [], []
for t in range(2000):
    if gpu_status:
        train_x = Variable(x).cuda()
        train_y = Variable(y).cuda()
    else:
        train_x = Variable(x)
        train_y = Variable(y)
    # out = net(train_x)
    out_l = logstic(train_x)
    loss = loss_f(out_l,train_y)
    optimizer_l.zero_grad()
    loss.backward()
    optimizer_l.step()

训练过成观察及可视化:

if t % 10 == 0:
    prediction = torch.max(F.softmax(out_l, 1), 1)[1]
    pred_y = prediction.data
    accuracy = sum(pred_y ==train_y.data)/float(2000.0)
    loss_point.append(loss.data[0])
    accuracy_point.append(accuracy)
    time_point.append(time.time()-start_time)
    print("[{}/{}] | accuracy : {:.3f} | loss : {:.3f} | time : {:.2f} ".format(t + 1, 2000, accuracy, loss.data[0],
                                                                    time.time() - start_time))
    viz.line(X=np.column_stack((np.array(time_point),np.array(time_point))),
             Y=np.column_stack((np.array(loss_point),np.array(accuracy_point))),
             win=line,
             opts=dict(legend=["loss", "accuracy"]))
     #这里的数据如果用gpu跑会出错,要把数据换成cpu的数据 .cpu()即可
    viz.scatter(X=train_x.cpu().data, Y=pred_y.cpu()+1, win=scatter,name="add",
                opts=dict(markercolor=colors,legend=["0", "1", "2", "3"]))
    viz.text("<h3 align='center' style='color:blue'>accuracy : {}</h3><br><h3 align='center' style='color:pink'>"
             "loss : {:.4f}</h3><br><h3 align ='center' style='color:green'>time : {:.1f}</h3>"
             .format(accuracy,loss.data[0],time.time()-start_time),win =text)

我们先用cpu运行一次,结果如下:

这里写图片描述

然后用gpu运行一下,结果如下:

这里写图片描述

发现cpu的速度比gpu快很多,但是我听说机器学习应该是gpu更快啊,百度了一下,知乎上的答案是:
这里写图片描述

我的理解就是gpu在处理图片识别大量矩阵运算等方面运算能力远高于cpu,在处理一些输入和输出都很少的,还是cpu更具优势。

添加神经层:

net = nn.Sequential(
    nn.Linear(2, 10),
    nn.ReLU(),   #激活函数
    nn.Linear(10, 4)
)

添加一层10单元神经层,看看效果是否会有所提升:
使用cpu:

这里写图片描述
使用gpu:

这里写图片描述

比较观察,似乎并没有什么区别,看来处理简单分类问题(输入,输出少)的问题,神经层和gpu不会对机器学习加持。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值