mean shift 图像分割(二)

本文详细介绍了Mean Shift算法的原理,包括密度估计、密度梯度估计和自适应步长计算。在图像分割领域,Mean Shift通过多元核密度估计处理空间和颜色信息。OpenCV实现中采用方形区域近似圆形,并常用Uniform Kernel进行滤波。文章还提及了带宽选择、Camshift、模式修剪等相关概念,为图像处理提供了深入的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Reference:

[1] Mean shift: A robust approach toward feature space analysis, PAMI, 2002

[2] mean shift,非常好的ppt 百度文库链接

[3] Pattern Recognition and Machine Learning, Bishop, 2006,Sec 2.5

[4] Computer Vision Algorithms and Applications, Richard Szeliski, 2010, Sec 5.3

[5] Kernel smoothing,MP Wand, MC Jones ,1994, Chapter 4


mean shift 图像分割 (一)1 总体思想,2 算法步骤

mean shift 图像分割 (二)3 算法原理,4 延伸

mean shift 图像分割 (三)5 非参数密度估计

图像分割—mean shift(OpenCV源码注解)



3 算法原理

3.1 密度估计

    关于密度估计,这里直接使用结论,具体原理,参见第5部分:非参数密度估计。

某一点的密度估计值:

    为核函数,一般我们会使用径向对称(radially symmetric)核函数。即:

    其中为标准化常数,使得

    称为的profile,原文介绍了两种,对应两种核,这里再补充一种。<

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值