file标签之act=info,查看文件或目录属性信息(例2:查看目录属性)

本文演示如何通过代码查看目录及其子目录的属性,并展示详细的文件信息列表,包括属性名称和对应值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例2:

查看目录属性

<fileid=file act=info>base</file>

查看base目录的属性,返回属性信息及子目录属性信息列表

显示返回的属性信息

    <for end=@{file:getWidth}>
        <tr><td>@{file:@{for:getSuffix}}</td><tdhtml>@{file:@{file:@{for:getSuffix}}}</td></tr>
    </for>

效果

 

显示目录中的文件及子目录属性信息列表

显示属性key

<tr>
    <bagid=file suffix=0 />
    <forend=@{file:getWidth}>
        <th>@{file:@{for:getSuffix}}</th>
    </for>
</tr>

显示属性信息列表

<for bags=fileend="@{file:getLength}">
<tr>
    <forend=@{file:getWidth}>
        <th>@{file:@{file:@{for:getSuffix}}}</th>
    </for>
</tr>
</for>

效果

 

完整代码

<html>
<title>查看目录属性</title>
<h3>查看目录属性</h3>
<table border=1>
<tr><th>变量名</th><th>值</th></tr>
<chtml>
    <fileid=file act=info>base</file>
    <forend=@{file:getWidth}>
        <tr><td>@{file:@{for:getSuffix}}</td><tdhtml>@{file:@{file:@{for:getSuffix}}}</td></tr>
    </for>
</chtml>
</table>
<h3>文件及子目录属性列表</h3>
<table border=1>
<chtml>
<tr>
    <bag id=filesuffix=0 />
    <forend=@{file:getWidth}>
        <th>@{file:@{for:getSuffix}}</th>
    </for>
</tr>
<for bags=fileend="@{file:getLength}">
<tr>
    <forend=@{file:getWidth}>
        <th>@{file:@{file:@{for:getSuffix}}}</th>
    </for>
</tr>
</for>
</chtml>
</table>
</html>

(例子文件:_samples/file_info_dir.html)

好玩吧大笑

轻开平台资源下载及说明

平台及最新开发手册免费下载:http://download.csdn.net/detail/tx18/8464425

开发手册下载:http://download.csdn.net/detail/tx18/8411089

开发实例:轻开B2C电子商务网站,免费下载:http://download.csdn.net/detail/tx18/8318585

轻开平台会不定期升级为大家提供更多强大而Easy的功能,请留意最新的开发手册

# https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index=1 # 导入requests import requests import time from bs4 import BeautifulSoup import mysql.connector import csv # 定义容器 用来存储所有数据 allContainer = [] for i in range(1, 36): # 判断当前是否为第一次循环 if i == 1: url = "https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index=1" else: url = f"https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index={i}" print(f"当前已完成第{i}次") # 循环休眠 防止检测 time.sleep(1) # 发起请求 # 请求头 header = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7", "Accept-Encoding": "gzip, deflate, br, zstd", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6", "Cache-Control": "max-age=0", "Connection": "keep-alive", "Cookie": "ddscreen=2; __permanent_id=20250609184530979156760224679480468; __visit_id=20250609184530993130404124438448889; __out_refer=1749465931%7C!%7Cwww.baidu.com%7C!%7C; dest_area=country_id%3D9000%26province_id%3D111%26city_id%3D0%26district_id%3D0%26town_id%3D0; __rpm=s_112100.155956512835%2C155956512836..1749466159510%7Cs_112100.155956512835%2C155956512836..1749466166450; search_passback=1e0bf85a587c99ab37bc4668fc0100003945670025bc4668; __trace_id=20250609184927332100480187110221325", "Host": "search.dangdang.com", "Referer": "https://search.dangdang.com/?key=%B1%E0%B3%CC&act=input&page_index=2", "Sec-Fetch-Dest": "document", "Sec-Fetch-Mode": "navigate", "Sec-Fetch-Site": "same-origin", "Sec-Fetch-User": "?1", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/137.0.0.0 Safari/537.36 Edg/137.0.0.0", } response = requests.get(url, headers=header) # 设置响应的编码格式 # response.encoding = 'utf-8' # 自动识别编码方式(关键!) response.encoding = response.apparent_encoding # 将响应先保存至本地,然后先测试对本地页面进行数据解析 然后再进行多次爬取 # with open('../data/当当网.html', 'w', encoding='utf-8') as f: # f.write(response.text) htmlTree = BeautifulSoup(response.text, 'html.parser') allulEle = htmlTree.find_all('ul', class_="bigimg") for ul in allulEle: # 根据每一个ul标签中的li 进行指定数据的获取 allw1 = ul.find_all('li', recursive=False) # 获取w1下的p标签 for li_tag in allw1: rowContainer = [] # 提取书名 title_tag = li_tag.find_all('p', class_='name') if title_tag: a_tag = li_tag.find_all('a') if a_tag: title = a_tag[0].get('title') href = a_tag[0].get('href') link = f"https:{href}" rowContainer.append(title) rowContainer.append(link) else: title = "" href = "" else: title = "" href = "" pre_price = li_tag.find_all('span', class_='search_pre_price') for p in pre_price: PrePrice = p.get_text(strip=True) rowContainer.append(PrePrice) # 提取评论数 comment_count = li_tag.find('a', class_='search_comment_num') if comment_count: CommentCount = comment_count.get_text(strip=True) else: CommentCount = '0条评论' rowContainer.append(CommentCount) # 提取作者、出版时间、出版社 author_info = li_tag.find('p', class_='search_book_author') for p in author_info: AuthorInfo = p.get_text(strip=True).replace('\\\\', '').replace('/', '') if not AuthorInfo: AuthorInfo = '' rowContainer.append(AuthorInfo) allContainer.append(rowContainer) for i in allContainer: print(i) # 导入数据库模块 import mysql.connector # 使用当前库中的内置对象来创建数据库连接 mydb = mysql.connector.connect( host='localhost', # 当前mysql运行服务的地址 port=3306, # mysql服务的端口号 user='root', # mysql用户名 password='root', # 密码 database='dangdang' ) # 创建游标对象 mycursor = mydb.cursor() # discount VARCHAR ( 20 ), -- 折扣 # 创建图书信息表 create_table_sql = """ CREATE TABLE IF NOT EXISTS books ( id INT AUTO_INCREMENT PRIMARY KEY, title VARCHAR ( 255 ) NOT NULL, -- 书名 link VARCHAR ( 512 ), -- 链接 now_price VARCHAR ( 20 ), -- 现价 comment_count VARCHAR ( 50 ), -- 评论数 author VARCHAR ( 100 ), -- 作者 publish_date VARCHAR ( 20 ), -- 出版时间 publisher VARCHAR ( 100 ), -- 出版社 action VARCHAR ( 100 ), unidentified VARCHAR ( 20 ) ) """ # 执行建表语句 mycursor.execute(create_table_sql) # 插入语句 insert_sql = """ INSERT INTO books (title, link, now_price, comment_count, author, publish_date, publisher, action, unidentified) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s) """ for book in allContainer: if len(book) == 8: book.insert(4, '') mycursor.execute(insert_sql, list(book)) # 提交事务 mydb.commit() print("✅ 数据插入完成,共插入", len(allContainer), "条记录") # 关闭连接 mycursor.close() mydb.close() import pandas as pd # 转成 DataFrame df = pd.DataFrame(allContainer, columns=["书名", "链接", "现价", "评论数", "作者", "出版时间", "出版社", "可选状态", "未知"]) # 插入序号列(从 1 开始) df.insert(0, '序号', range(1, len(df) + 1)) # 保存为 Excel 文件 df.to_excel("../data/当当网.xlsx", index=False) print("✅ 数据已成功保存为 Excel 文件!") import jieba import wordcloud # 读取excel 文件到当前代码中 import openpyxl from wordcloud import WordCloud # 获取当前excel 表格对象 wb = openpyxl.load_workbook('../data/当当网.xlsx') # 获取当前表格中的sheet sheet = wb.worksheets[0] # 遍历当前的execl 对象 # min row = 2 代表的是从当前表格中的第二行开始获取 # min col = 3 代表获取第三列 # max col = 3 最大的列是三,之确保我们获取当前第三列 # 定义一个列表用来存储当前获取的所有的数据 data = [] for row in sheet.iter_rows(min_row=2, min_col=2, max_col=5): data.append(row[0].value) # 获取每个单元格中的value值 # print(data) # 对当前的数组中的元素进行分割词组 seg_list = jieba.cut(''.join(data), cut_all=False) # print(type(seg_list)) # # print('/'.join(seg_list)) # 引入当前的字体 作为词云图的渲染字体 fonts = '../data/AlibabaPuHuiTi-2-65-Medium.ttf' wc = WordCloud( # 通过属性对当前的词云图进行赋值 width=1200, # 宽600px height=600, background_color='white', max_font_size=50, min_font_size=10, font_path=fonts ) # 将分隔完成的数据 加载到当前的wc对象中 wc.generate_from_text(''.join(seg_list)) # 保存当前的结果到指定文件夹中 wc.to_file("../data/词云图.png") import numpy as np import pandas as pd # 这些设置有助于调试时查看完整的 DataFrame 数据,适合开发阶段使用 pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) newXml = pd.read_excel("../data/当当网.xlsx") print(newXml.shape) # 查看行数列数 print(newXml.info()) # 查看各列的数据类型及缺失值 # # 检查重复行 duplicates = newXml.duplicated(keep='first') print("重复行数量:", duplicates.sum()) # # 删除重复行 cleaned_data = newXml.drop_duplicates() print("删除重复后数据形状:", cleaned_data.shape) # # 删除含有空值的行 dropna_data = newXml.dropna() print("删除空值后数据形状:", dropna_data.shape) # 者填充空值 # filled_data = newXml.fillna({"未知": "默认值"}) df = newXml.drop(columns=['未知']) print(df) # filled_data = newXml.fillna({"CPU信息": "未知", "等级": 0}) df.to_excel("../data/new当当.xlsx", index=False) import pandas as pd import numpy as np import pandas as pd from pyecharts import options as opts from pyecharts.charts import Bar, Line, Scatter, Pie, Radar from pyecharts.globals import ThemeType # 读取文件 excel_file = pd.ExcelFile('../data/new当当.xlsx') # 获取指定工作表中的数据 df = excel_file.parse('Sheet1') # 将出版社列转换为字符串类型 df['出版社'] = df['出版社'].astype(str) # 获取出版社书名列的数据 publishers = df['出版社'].to_numpy() book_names = df['书名'].to_numpy() # 获取唯一的出版社 unique_publishers = np.unique(publishers) # 统计每个出版社的书籍数量 book_counts = np.array([np.sum(publishers == publisher) for publisher in unique_publishers]) # 构建结果 DataFrame result_df = pd.DataFrame({ '出版社': unique_publishers, '书籍数量': book_counts }) print(result_df) # 读取数据 df = pd.read_excel('../data/new当当.xlsx') # 数据预处理 # 转换现价列,提取数字 df['现价'] = df['现价'].str.extract('(\d+\.?\d*)').astype(float) # 转换评论数列,提取数字 df['评论数'] = df['评论数'].str.extract('(\d+)').astype(int) # 转换出版时间列,提取年份 df['出版年份'] = pd.to_datetime(df['出版时间']).dt.year # 图表1:价格分布直方图 hist, bins = pd.cut(df['现价'], bins=20, retbins=True) hist_value = hist.value_counts().sort_index() # 使用 Bar 来模拟直方图 histogram = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis([f"{bins[i]:.2f}-{bins[i + 1]:.2f}" for i in range(len(bins) - 1)]) .add_yaxis("书籍数量", hist_value.tolist(), category_gap=0) .set_global_opts( title_opts=opts.TitleOpts(title="价格分布柱状图"), xaxis_opts=opts.AxisOpts(name="价格区间"), yaxis_opts=opts.AxisOpts(name="数量"), ) ) # 图表2:不同出版社出版书籍数量柱状图 publisher_counts = df['出版社'].value_counts() bar_publisher = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis(publisher_counts.index.tolist()) .add_yaxis("出版书籍数量", publisher_counts.tolist()) .set_global_opts( title_opts=opts.TitleOpts(title="不同出版社出版书籍数量柱状图"), xaxis_opts=opts.AxisOpts(name="出版社", axislabel_opts={"rotate": 90}), yaxis_opts=opts.AxisOpts(name="出版书籍数量"), ) ) # 图表3:每年出版书籍数量折线图 yearly_counts = df['出版年份'].value_counts().sort_index() line_yearly = ( Line(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis(yearly_counts.index.astype(str).tolist()) .add_yaxis("出版书籍数量", yearly_counts.tolist(), is_smooth=True, symbol="circle") .set_global_opts( title_opts=opts.TitleOpts(title="每年出版书籍数量折线图"), xaxis_opts=opts.AxisOpts(name="出版年份"), yaxis_opts=opts.AxisOpts(name="出版书籍数量"), ) ) # 图表4:评论数前五书籍的书名与评论数柱状图 top_5_commented = df.nlargest(5, '评论数') bar_comment = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT, width="800px", height="400px")) .add_xaxis(top_5_commented['书名'].tolist()) .add_yaxis("评论数", top_5_commented['评论数'].tolist()) .set_global_opts( title_opts=opts.TitleOpts(title="评论数前五书籍的书名与评论数柱状图"), xaxis_opts=opts.AxisOpts(name="书名", axislabel_opts={"rotate": 90}), yaxis_opts=opts.AxisOpts(name="评论数"), ) ) # 图表5:价格与评论数的散点图 # 将现价列转换为字符串类型 df['现价'] = df['现价'].astype(str) # 提取价格数值 df['价格'] = df['现价'].str.extract(r'(\d+\.?\d*)').astype(float) # 检查价格列是否存在缺失值 print(f"价格列缺失值数量: {df['价格'].isna().sum()}") # 删除价格列为缺失值的行 df = df.dropna(subset=['价格']) # 定义价格区间 bins = [0, 50, 100, 150, 200, float('inf')] labels = ['0 - 50', '51 - 100', '101 - 150', '151 - 200', '200以上'] # 划分价格区间并统计数量 df['价格区间'] = pd.cut(df['价格'], bins=bins, labels=labels) price_range_counts = df['价格区间'].value_counts().reset_index(name='数量') # 使用 pyecharts 绘制饼状图 pie = ( Pie() .add( series_name="数量", data_pair=[list(z) for z in zip(price_range_counts['价格区间'], price_range_counts['数量'])], radius=["40%", "75%"], ) .set_global_opts( title_opts=opts.TitleOpts(title="价格区间与数量的饼状图"), legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"), ) .set_series_opts( label_opts=opts.LabelOpts(formatter="{b}: {d}%") ) ) # 将评论数列转换为字符串类型 df['评论数'] = df['评论数'].astype(str) # 提取评论数数值 df['评论数数值'] = df['评论数'].str.extract(r'(\d+\.?\d*)').astype(float) # 找出评论数前五的书籍 top_5_books = df.nlargest(5, '评论数数值', keep='all')[['书名', '评论数数值']] # 定义雷达图的指标 c_schema = [{"name": book_name, "max": top_5_books['评论数数值'].max()} for book_name in top_5_books['书名']] # 准备雷达图的数据 data = [[count for count in top_5_books['评论数数值'].values]] # 创建雷达图对象 ( Radar() .add_schema(schema=c_schema) .add( series_name="评论数", data=data, areastyle_opts=opts.AreaStyleOpts(opacity=0.2) ) .set_global_opts( title_opts=opts.TitleOpts(title="评论数前五的书籍的书名与评论数雷达图"), ) .render("../data/radar_chart_top5_books.html") ) # 统计不同出版社的书籍数量 publisher_book_count = df['出版社'].value_counts().reset_index() publisher_book_count.columns = ['出版社', '书籍数量'] # 选取书籍数量前 10 的出版社 top_10_publisher = publisher_book_count.nlargest(10, '书籍数量') # 创建散点图对象 scatter = ( Scatter() .add_xaxis(top_10_publisher['出版社'].tolist()) .add_yaxis( series_name="书籍数量", y_axis=top_10_publisher['书籍数量'].tolist(), symbol_size=10, label_opts=opts.LabelOpts(is_show=False) ) .set_global_opts( title_opts=opts.TitleOpts(title="不同出版社书籍数量前10的散点图"), xaxis_opts=opts.AxisOpts( name="出版社", type_="category", axislabel_opts=opts.LabelOpts(rotate=45, interval="auto") ), yaxis_opts=opts.AxisOpts(name="书籍数量"), ) ) # 保存图表 histogram.render("../data/price_distribution_histogram.html") bar_publisher.render("../data/publisher_book_count_bar.html") line_yearly.render("../data/yearly_book_count_line.html") bar_comment.render("../data/top_commented_books_bar.html") pie.render("../data/price_range_pie_chart.html") scatter.render("../data/scatter_top10_publisher_book_count.html") from flask import Flask, request, render_template_string, jsonify import requests # import requests # # # 定义一个message的变量,作为会话的容器 # messages = [{"role":"system","content":""}] # # # API KEY # API_KEY = "sk-ec2e933afb424766ba6bce9765960a3a" # # 设置请求头 # header = { # "Content-Type": "application/json", # 告知服务器我们传递的内容的数据类型 # "Authorization": f"Bearer {API_KEY}" # api_key # } # # # 请求地址 # url = "https://api.deepseek.com/chat/completions" # # # 因为要完成多轮对话 所以要有循环 # # 同时因为要完成用户的多次对话请求 # # def DeepSeekChat(userMessage): # # 1. 将用户输入的信息与角色进行拼接 从而变成一个完成的对话 # messages.append( {"role": "user", "content": userMessage}) # # # 2. 请求deepseek 请求过程中将我们携带的多个参数进行传递 # data = { # "model":"deepseek-chat", # "messages":messages, # "stream":False # } # # # 3. 发起请求 # response = requests.post(url, json=data, headers=header) # # # 4. 对response进行处理 # if response.status_code == 200: # # 获取响应内容 # result_json = response.json() # # 处理当前json中的内容 # airesult = result_json['choices'][0]['message']['content'] # # AI返回结果 # print(f"图书商城AI客服:{airesult}") # # 如何实现多轮对话 # # 将回复的内容继续追加到列表中,形成会话的闭合,结合上下文内容 # messages.append({"role": "assistant", "content": airesult}) # else: # print(response.text) # print("请求失败") # # print("图书商城欢迎您") # print("使用exit退出程序") # # while True: # userinput = input("你:") # if userinput == "exit": # print("退出当前程序") # break # else: # # 调用函数完成多次请求的发送 # # 将用户输入的内容作为参数调用函数 完成API的调用 # DeepSeekChat(userinput) 这是我写的代码,需要把爬虫得到的数据与deepseek相结合,使得可以在一个新页面上根据数据与ai对话,请你进行修改
最新发布
06-14
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值