
YOLO11创新改进涨点与实战案例
文章平均质量分 96
本专栏提供详细的 YOLO11 教程,包括基础知识、源码解析、入门实践、算法改进和项目实战,适合发表YOLO11 学习者订阅。内容包含 100+多篇独家改进机制,适合发表论文,评分高达 96 分。订阅者将获得一键运行的改进文件及答疑交流群支持。 使用服务器的同学还可以私聊获取搭建好的运行环境。
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
YOLO大师
这个作者很懒,什么都没留下…
展开
-
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新110+)
本专栏提供详细的 YOLO11 教程,包括基础知识、源码解析、入门实践、算法改进和项目实战,适合发表YOLO11 学习者订阅。内容包含 100+多篇独家改进机制,适合发表论文,评分高达 96 分。订阅者将获得一键运行的改进文件及答疑交流群支持。 使用服务器的同学还可以私聊获取搭建好的运行环境。原创 2024-10-29 17:19:34 · 11657 阅读 · 0 评论 -
【YOLOv11改进- 原理解析】 YOLO11 架构解析 以及代码库关键代码逐行解析
【YOLOv11改进- 原理解析】 YOLO11 架构解析 以及代码库关键代码逐行解析原创 2024-10-23 21:16:00 · 5808 阅读 · 0 评论 -
【YOLO11改进 - 卷积Conv】PConv(Pinwheel-shaped Conv): 风车状卷积用于红外小目标检测
【YOLO11改进 - 卷积Conv】PConv(Pinwheel-shaped Conv): 风车状卷积用于红外小目标检测原创 2025-04-16 20:55:24 · 82 阅读 · 0 评论 -
【YOLO11改进 - 特征融合】EFC: 基于增强层间特征关联的轻量级即插即用融合策略,即插即用适,用于小目标检测
由于低分辨率和背景混合,检测无人机图像中的小物体具有挑战性,导致特征信息有限。多尺度特征融合可以通过获取不同尺度上的信息来增强检测能力,但传统的方法存在不足。简单的连接或加法运算不能充分利用多尺度融合的优点,导致特征之间的相关性不足。这一不足阻碍了对小物体的检测,特别是在复杂背景和人口稠密地区。为了解决这一问题并有效地利用有限的计算资源,提出了一种基于增强层间特征相关性(EFC)的轻量级融合策略,以取代传统的特征金字塔网络(FPN)中的特征融合策略。特征金字塔中不同图层的语义表达不一致。原创 2025-04-14 22:50:37 · 86 阅读 · 0 评论 -
【YOLO11改进 - NECK】当Yolo11视觉对象检测遇上Hyper超图计算
摘要 —— 我们提出了 Hyper-YOLO,这是一种新的目标检测方法,它集成了超图计算,以捕捉视觉特征之间复杂的高阶相关性。传统的 YOLO 模型虽然强大,但在颈部设计上存在局限性,限制了跨层特征的整合以及高阶特征相互关系的挖掘。为应对这些挑战,我们提出了超图计算赋能语义收集与散射(HGCSCS)框架,该框架将视觉特征图转换到语义空间,并构建超图用于高阶消息传播。这使模型能够获取语义和结构信息,超越了传统的以特征为中心的学习方式。原创 2025-02-19 21:39:12 · 162 阅读 · 0 评论 -
【YOLO11改进 - 损失函数】Shape-IoU:考虑边框形状与尺度的指标
【YOLO11改进 - 损失函数】Shape-IoU:考虑边框形状与尺度的指标原创 2025-01-20 22:57:12 · 331 阅读 · 0 评论 -
【YOLO11改进 - 卷积Conv】LAE: 轻量级自适应提取卷积,从多尺度特征图中获得更多的上下文信息和高分辨率细节
【YOLO11改进 - 卷积Conv】LAE: 轻量级自适应提取卷积,从多尺度特征图中获得更多的上下文信息和高分辨率细节原创 2025-01-05 22:37:25 · 384 阅读 · 0 评论 -
【YOLO11改进 - 注意力机制】HaloNet通过局部自注意力机制(Local Self-Attention)来捕捉空间交互
【YOLO11改进 - 注意力机制】HaloNet通过局部自注意力机制(Local Self-Attention)来捕捉空间交互原创 2025-01-05 22:25:14 · 271 阅读 · 0 评论 -
【YOLO11改进 - 注意力机制】Axial Attention:轴向注意力,提高计算效率和内存使用
【YOLO11改进 - 注意力机制】Axial Attention:轴向注意力,提高计算效率和内存使用原创 2025-01-04 15:00:34 · 160 阅读 · 0 评论 -
【YOLO11改进 - 特征融合】利用Hyper-YOLO 的混合聚合网络(MANet)改进yolo11,提升基础网络的特征提取能力
【YOLO11改进 - 特征融合】利用Hyper-YOLO 的混合聚合网络(MANet)改进yolo11,提升基础网络的特征提取能力原创 2025-01-04 14:37:21 · 405 阅读 · 0 评论 -
【YOLO11改进 - 注意力机制】SCSA通过结合空间注意力和通道注意力,提高各种下游视觉任务的性能。
【YOLO11改进 - 注意力机制】SCSA通过结合空间注意力和通道注意力,提高各种下游视觉任务的性能。原创 2025-01-02 22:43:52 · 160 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合EFA(Efficient Fusion Attention) 高效融合提高图像分割的特征提取能力
【YOLO11改进 - C3k2融合】C3k2融合EFA(Efficient Fusion Attention) 高效融合提高图像分割的特征提取能力。Y医学图像分割在定量分析、临床诊断和医学干预中起着至关重要的作用。然而,由于存在不同的目标类型和尺度、复杂的背景以及组织间的相似性,从医学图像中提取有价值的信息极具挑战性。为了解决这些问题,本文提出了一种轻量化注意力网络(LANet),其融合了高效融合注意力(EFA)模块和自适应特征融合(AFF)解码模块。EFA模块通过捕捉与任务相关的信息,原创 2025-01-02 22:26:40 · 276 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合SMFANet的FMB:通过多层次的特征调制来生成深层次的代表性特征
【YOLO11改进 - C3k2融合】C3k2融合FMB:通过多层次的特征调制来生成深层次的代表性特征原创 2024-11-29 09:14:39 · 366 阅读 · 0 评论 -
【YOLO11改进 - 即插即用】SMFA(Self-Modulation Feature Aggregation):自调制特征聚合模块
【YOLO11改进 - 即插即用】SMFA(Self-Modulation Feature Aggregation):自调制特征聚合模块原创 2024-11-27 22:39:42 · 340 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合WTConv:,基于小波变换的新型卷积 ,小参数大感受野
【YOLO11改进 - C3k2融合】C3k2融合WTConv:,基于小波变换的新型卷积 ,小参数大感受野原创 2024-11-27 22:16:41 · 440 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】参考DFLM-YOLO中的FasterBlock-CGLU-C2实现C3K2_FasterBlock_CGLU,来优化骨干网络结构,从而减少了模型的参数和推理时间
【YOLO11改进 - C3k2融合】参考DFLM-YOLO中的FasterBlock-CGLU-C2实现C3K2_FasterBlock_CGLU,来优化骨干网络结构,从而减少了模型的参数和推理时间。原创 2024-11-26 22:33:03 · 328 阅读 · 0 评论 -
【YOLO11改进 - 特征融合】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数
【YOLO11改进 - 特征融合】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数原创 2024-11-25 22:42:35 · 360 阅读 · 0 评论 -
【YOLO11改进 - 特征融合】利用YOLOv9中的RepNCSPELAN4模块替代C3k2
【YOLO11改进 - 特征融合】利用YOLOv9中的RepNCSPELAN4模块替代C3k2原创 2024-11-25 22:29:18 · 193 阅读 · 0 评论 -
【YOLO11改进 - SPPF】利用YOLOv9中的SPPELAN模块替代SPPF
【YOLO11改进 - SPPF】利用YOLOv9中的SPPELAN模块替代SPPF原创 2024-11-25 22:02:38 · 176 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】参考BFA-YOLO用 RetBlock 替换了 C3k2 模块中的 Bottleneck 层,,提高模型处理局部细节的能力和整体性能
【YOLO11改进 - C3k2融合】参考BFA-YOLO用 RetBlock 替换了 C3k2 模块中的 Bottleneck 层,,提高模型处理局部细节的能力和整体性能原创 2024-11-25 14:32:40 · 422 阅读 · 0 评论 -
【YOLO11改进 - Backbone主干】RepViT(Revisiting Mobile CNN From ViT Perspective):新型的轻量级卷积神经网络(CNN)
【YOLO11改进 - Backbone主干】RepViT(Revisiting Mobile CNN From ViT Perspective):新型的轻量级卷积神经网络(CNN)原创 2024-11-24 22:56:04 · 278 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合RepViT的核心RepViTBlock,提高特征提取和全局信息处理能力
【YOLO11改进 - C3k2融合】C3k2融合RepViT的核心RepViTBlock,提高特征提取和全局信息处理能力原创 2024-11-24 22:47:15 · 262 阅读 · 0 评论 -
【YOLO11改进 - block】RepViTBlock提高特征提取和全局信息处理能力
【YOLO11改进 - block】RepViTBlock提高特征提取和全局信息处理能力原创 2024-11-24 22:35:02 · 185 阅读 · 0 评论 -
【YOLO11改进 - 采样】WaveletPool小波池化改进YOLO11的采样,解决小目标的混叠问题,提高检测精度
【YOLO11改进 - 采样】WaveletPool小波池化改进YOLO11的采样,解决小目标的混叠问题,提高检测精度原创 2024-11-24 21:58:06 · 515 阅读 · 0 评论 -
【YOLO11改进 - 特征融合】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
在文章中,我们介绍了一种快速且准确的目标检测方法,称为DAMO-YOLO,其性能优于最先进的YOLO系列。DAMO-YOLO在YOLO的基础上扩展了几项新技术,包括神经架构搜索(Neural Architecture Search,NAS)、高效的重参数化通用FPN(RepGFPN)、带有AlignedOTA标签分配的轻量化检测头和蒸馏增强。原创 2024-11-19 23:00:38 · 277 阅读 · 0 评论 -
【YOLO11改进 - 特征融合】 使用华为GOLD-YOLO中的Gatherand-Distribute改进YOLO11的特征融合模块
【YOLO11改进 - 特征融合】 使用华为GOLD-YOLO中的Gatherand-Distribute改进YOLO11的特征融合模块原创 2024-11-19 22:52:08 · 256 阅读 · 0 评论 -
【YOLO11改进 - 采样】DRFD&SRFD: 深层/浅层下采样,适应特征捕获的不同阶段并提高特征稳健性
【YOLO11改进 - 采样】DRFD&SRFD: 深层/浅层下采样,适应特征捕获的不同阶段并提高特征稳健性原创 2024-11-19 16:16:04 · 481 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合DynamicConv(动态卷积)二次创新,有效提升网络模型的表征能力且不增加模型深度和宽度
【YOLO11改进 - C3k2融合】C3k2融合DynamicConv(动态卷积)二次创新,有效提升网络模型的表征能力且不增加模型深度和宽度原创 2024-11-19 15:44:25 · 253 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合AKConv(可改变核卷积)二次创新:任意数量的参数和任意采样形状的即插即用的卷积
【YOLO11改进 - C3k2融合】C3k2融合AKConv(可改变核卷积)二次创新:任意数量的参数和任意采样形状的即插即用的卷积原创 2024-11-19 15:32:23 · 197 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合MLCA二次创新:Mixed local channel attention,混合局部通道注意力
【YOLO11改进 - C3k2融合】C3k2融合MLCA二次创新:Mixed local channel attention,混合局部通道注意力原创 2024-11-19 10:05:48 · 124 阅读 · 0 评论 -
【YOLO11改进 - Backbone主干】LSKNet:旋转目标检测新网络,通过DW卷积核和空间选择机制来动态调整目标的感受野
【YOLO11改进 - Backbone主干】LSKNet:旋转目标检测新网络,通过DW卷积核和空间选择机制来动态调整目标的感受野原创 2024-11-18 22:34:43 · 100 阅读 · 0 评论 -
【YOLO11改进 - Backbone主干】RevCol :可逆的多 column 网络,大模型架构设计新范式
我们提出了一种新的神经网络设计范式——可逆列网络(Reversible Column Network,简称RevCol)。RevCol的主体由多个子网络的副本组成,分别称为列(columns),列之间采用多层级的可逆连接。这种架构使RevCol的行为与传统网络截然不同:在前向传播过程中,RevCol中的特征在通过每一列时逐渐被解耦,而整体信息得以保留,而不是像其他网络那样被压缩或丢弃。原创 2024-11-18 22:17:46 · 182 阅读 · 0 评论 -
【YOLO11改进 - 特征融合】 AFPN :渐进特征金字塔网络,YOLO的最佳搭档
【YOLO11改进 - 特征融合】 AFPN :渐进特征金字塔网络,YOLO的最佳搭档原创 2024-11-10 21:06:02 · 395 阅读 · 0 评论 -
【YOLO11改进 - Backbone主干】 ConvNeXtV2:全卷积掩码自编码器网络,性能不输Transformer
【YOLO11改进 - Backbone主干】 ConvNeXtV2:全卷积掩码自编码器网络,性能不输Transformer原创 2024-11-10 19:32:04 · 272 阅读 · 0 评论 -
【YOLO11改进 - C3k2融合】C3k2融合OREPA(Online Convolutional Re-parameterization):在线卷积重参数化
【YOLO11改进 - 特征融合】C3k2融合OREPA(Online Convolutional Re-parameterization):在线卷积重参数化原创 2024-11-10 19:01:51 · 158 阅读 · 0 评论 -
手把手教你搭建Windows+YOLO11+CUDA环境,以EMA注意演示如何改进YOLO11, 训练自定义数据集,小白也能看得懂的!
【YOLO11改进- 环境搭建】手把手教你搭建Windows+YOLO11+CUDA环境,训练自定义数据集,以EMA注意演示如何改进YOLO11。小白也能看得懂的!原创 2024-11-09 11:21:13 · 2117 阅读 · 0 评论 -
【YOLO11改进 - 注意力机制】添加YOLO-Face提出的SEAM注意力,提高遮挡情况下的特征学习能力
【YOLO11改进 - 注意力机制】添加YOLO-Face提出的SEAM注意力,提高遮挡情况下的特征学习能力原创 2024-11-08 15:53:40 · 258 阅读 · 0 评论 -
【YOLO11改进 - 检测头】Detect-Dyhead检测头:带有注意力机制检测头,较低参数数量的同时显着增强特征表示能力
【YOLO11改进 - 检测头】Detect-Dyhead检测头:带有注意力机制检测头,较低参数数量的同时显着增强特征表示能力原创 2024-11-08 15:07:02 · 784 阅读 · 0 评论 -
【YOLO11改进 - 检测头】Detect_LSCD检测头:量化的检测头,进一步提升模型的检测效率和精度
【YOLO11改进 - 检测头】Detect_LSCD检测头:量化的检测头,进一步提升模型的检测效率和精度原创 2024-11-08 13:37:15 · 1891 阅读 · 0 评论 -
【YOLO11改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示
【YOLO11改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示原创 2024-11-07 23:11:24 · 131 阅读 · 0 评论